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Foreword

The opening of the space age had the effect of reviv-
ing interest in the field of celestial mechanics, which
had been somewhat neglected in the first half of the
20th century. Stimulated by the early artificial earth

satellites, the revival began with the simplest problems

of spherical astronomy and orbit theory; then it ex-
tended into problems of special and finally general
perturbations. During the last few years the problem
of the figures of the planets and its connection with
their rotations has come to the fore, partly because of
its relation to the shape of the Earth and partly be-
cause of the idea brought forward by D. U. Wise and
others that the Moon may really have come out of
the Earth,

Just as it was necessary to rediscover and reprint
the great treatise of Tisserand from the 1890’s for
many of the problems of celestial mechanics, so also,
I feel, it will be useful to bring out this summary of
the problems of the figures of rotating bodies as ‘it
stood in the mid 1930’s. Hagihara, whom I am proud
to count as a friend, has done the scientific world
a great service in bringing these scattered works

together, summarizing them, and presenting their-

consequences.

The work of Lyttleton, Chandrasekhar, Roberts,
Levinson, and others has recently further advanced
the subject. Nevertheless, this comprehensive and
thoughtful review, by a powerful mathematician, of
the situation as it stood in 1935 will be of great value
to the new student of the subject.

- JoHN A. O’KEEFE
November 1969 Goddard Space Flight Center
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Preface

These are the lectures delivered before the staffs of
the Smithsonian Astrophysical Observatory. Since
the time for the lectures was limited, I could not
treat the equilibrium figures of a heterogeneous
rotating fluid and the difficult problem of the stability
of such equilibrium figures was also left out. Poincaré’s
theory of dynamical tides is included as Appendix A.
Both materials are taken from my lecture notes at
the University of Tbkyo.

On this occasion I would like to express my gratitude
to Dr. Fred M. Whipple, director of the Smithsonian
Astrophysical Observatory, for his kind invitation and
warm hospitality. Appreciation is also due to NASA’s
Goddard Space Flight Center for accepting this manu-
script with its difficult typography.

Y. HAGIHARA
Tokyo
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Introduction

Preliminary theories of the figure of a star as an equilibrium figure of a rotating, homo-’
geneous fluid mass have been treated since Newton by Maupertuis, Maclaurin, Simpson,
Clairaut, ‘and Euler. Laplace and Legendre invented a new class of functions and solved
Clairaut’s problem. Jacobi (1834) discovered an ellipsoidal equilibrium figure with three
unequal axes, which was thought to be curious in those days because it rotates, and Liou-
ville, Smith, and Plana proved its existence as an equilibrium figure. Thomson and Tait
considered various other figures without proving their existence. It was Tchebycheff (1882)
who proposed the problem how the equilibrium figures of a rotating mass of incompressible
fluid vary as the rotational speed gradually increases. Liapounov (1884) and Poincaré (1885)
solved the problem independently.

When the angular speed is zero, the only stable figure is a sphere. This'is Liapounov’s.
theorem. Recent proof of the theorem is based on the rigorous existence theorem of the solu-
‘tion of a corresponding isoperimetric problem in the calculus of variations. As the angular
speed increases, a Maclaurin spheroid becomes an equilibrium figure. As it increases further,
a Jacobi ellipsoid with three unequal axes appears as a stable equilibrium figure; then, a
pear-shaped figure appears as an equilibrium figure. Thus Poincaré, basing his discussion
on thelexpansion in Lamé polynomials, instead of Legendre polynomials as in the case of
a sphere, initiated the idea of linear series of such equilibrium figures and the notion of the
exchange of stability at the junction of the Maclaurin spheroids and the Jacobi ellipsoids,
which he called the bifurcation point. As the angular velocity increases from this point, the
Jacobi ellipsoid is stable, and the Maclaurin spheroid is no longer stable. A further increase
of the angular speed leads to a new bifurcation point where a new linear series for pear-shaped
figures appears. But Poincaré concluded that these pear-shaped figures were stable, and
Liapounov concluded that they were unstable. Darwin (1902) thought that he had confirmed
the Poincaré conclusion by inventing very complicated ellipsoidal harmonics for the dis-
cussion, but, since he omitted a-term larger in magnitude than the terms he computed, his
final conclusion was erroneous.

Llapounov because he had reached a conclusion opposite to that of Poincaré—the greatest
mathematician in those days—recon51dered the problem with great care. Between 1904 and
1914, he published a rigorous proof of the instability in a series ‘of papers in which he con-
firmed his previous conclusion that a pear-shaped figure is unstable. However, it was neces-
sary to prove a certain inequality, which he did not prove, but thought most probably true.

Jeans (1903) considered a corresponding problem in two dimensions and proved the
cylindrical figure corresponding to the pear-shaped to be unstable; he then proceeded to

1



2 : INTRODUCTION

prove the instability of pear-shaped figures by his method of expansion. The convergence
of his series was challenged by Baker; however, Baker later found that the series employed
by Jeans are simply those of Liapounov in his final method of 1916. Bénés and Humbert
extended Poincaré’s work to higher harmonics.

The criterion on which the stability of such equilibrium figures is based is that of Dirichlet.
Liapounov and Poincaré based their discussions on different modified forms of this criterion.
However, Poincaré’s criterion was criticized by Schwarzschild (1896). Liapounov’s criterion
can answer the question of stability even when Poincaré’s cannot, just as in the criterion of
stability in particle dynamics (Liapounov, 1949).

Ringform figures of equilibrium were discussed by Laplace (1859), Maxwell (1859),
Mathiessen (1859), Kowalewski (1874), Poincaré (1885), and Lichtenstein (1923). Several
detached figures of equilibrium were discussed by Darwin (1906), Lichtenstein (1923, 1933),
and his pupils Holder (1926, 1933) and Garten (1932). Lichtenstein’s theory of equilibrium
figures is based on a nonlinear integro-differential equation developed by Schmidt and
Lichtenstein. The equations on which Lichtenstein’s theory is based are those that Liapounov
took -as his fundamental functional equations.

Liapounov further extended his study to the equilibrium figures of a heterogeneous fluid
mass. His manuscript was published after his death by the USSR Academy of Sciences. Now
‘all these papers are published in his collected works.

The question of the figures of the earth and planets is very important in this connection.
"We must refer to equilibrium figures of a heterogeneous fluid mass such as those recently
developed by Dive and Wavre. Moreover, the dynamical figure of the earth is not one of axial
symmetry but involves tesseral harmonics, as observations of earth satellites show. Recent
developments in the study of the earth’s interior reveal a complicated feature with stratifica-
tion, electric current, and a magnetic field.

The most interesting application of such equilibrium figures is to cosmogony with the
supposition that a star might be divided into a system of double stars or have a ring or nebular
arms around it by an increase in its angular speed of rotation with constant angular momen-
tum. Laplace, Poincaré, Darwin, and Jeans developed their cosmogonical theories on these
assumptions. Recent advances in astrophysics, however, make such theories unsatisfactory
unless an essential improvement can be made in the physical aspect of the problem.

Thus the theory of equilibrium figures of a rotating, homogeneous, incompressible fluid
mass should be considered a preliminary approach to understanding such natural phenomena.



CHAPTER |

General Properties of Equilibrium
Figures

THEOREMS FROM POTENTIAL THEORY

Green’s Formula

Let x(t), 7(t), z(t) be continuous functions in a closed interval (0, ), such that w(t1)=x(t2),
y(t1) =y(t), and z(¢;) =2z(t2) for t; =t,. Then the locus of the point with coordinates x(¢),
¥(t), z(t) is continuous. If x(0) =x(27), y(0) =y(2r), and z(0) =z(27), then the curve
- is said to be a Jordan curve. Similarly, we define a Jordan surface by using two Gaussian
parameters u and v instead of the parameter ¢. Any closed surface that can be mapped con-
tinuously on the surface of a sphere in a one-to-one correspondence is said to be a Jordan
surface. Any closed solid bounded by a set of Jordan surfaces, such that a plane can be drawn
at any point on the surface in such a way that the whole solid is on one side of the plane, is
called a convex body. A regular surface is such that the coordinates x=¢(u, v), y=y¢(u, v),
and z=x(u, v), and their first-order derivatives are continuous with respect to the two
Gaussian parameters, and that

el bl bl

Consider a regular region bounded by a regular surface. Let X, Y, Z be continuous both
in the solid T and on the bounding surface S and continuously or piecewise differentiable
on S. Then we have Green’s theorem ‘(otherwise known as Gauss’ theorem or the divergence

theorem):
fff(ax o, af) T=IL(X/+Ym+Zn)d0'

| [ o Vd7=fLVnd¢r,

or
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and Stokes’ theorem

fLL(22) ()

Consider X continuous with its first-order derivatives; then

[ [ [Zdem| [ exam

oY oX B
(5—;-5;>n]do-—fc(de+Ydy+Zdz).

Put X=UV,, Vi=0V/ox; then

[[ o] [ evsian-] [ 5500

Adding three such formulas gives Green’s formula

[[[vara=| o500 ] [ [ 55 0

Interchanging U and V and subtracting these two formulas gives

fff(UAV VAU)dfr—ff( P )do-, 2)

where 8n is measured in the direction of the outward normal to the boundary surface. If

AU=0 and AV=0, then
IJ'( v 6U>d0_ 0. : (2a)

[ffAVdﬂr=]f%%do: @)

If AV'=0, then from equation 3 we get

[

Hence, the integral of the normal derivative of a function, which is harmonic and continuously
differentiable, integrated over the boundary of a regular region is zero. Conversely, if the
integral of the normal derivative of a function integrated over S is zero, then the function is
harmonic in T.

Setting U=V =U; in equation 1 gives

J [ ] owae= | [ ar- IHE( ks @

If we put U=1, then
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Further, if AU=0, then

”U%gd"=f”2(%g)2df>0- ©)

The right-hand integral is called the Dirichlet integral.

Harmonic Functions

A function U is called harmonic when it satisfies the following conditions:

(1) It is continuous together with its first-order derivatives.

(2) Its second-order derivatives exist and are, in general, continuous (if they are dis-
continuous, the discontinuities are on an algebraic surface — piecewise continuous).

3)AU=0.

In Gauss’ mean: let U be harmonic and M, be a point in a domain and construct a sphere
2 within that domain with M, as its center. Let U, be the value of U at M,. Then the mean
value of U over the spherical surface with radius r— U= | Udo/4rrt—is equal to Us, whatever
the value of r.

In Gauss’ theorem, a harmonic function can be neither a minimum nor a maximum inside
a domain T except on the bounding surface S. ,

As a corollary, let g and 2 be the maximum and minimum respectively of a function
U within T then A < U < g within T, and A < U < g on S. If U is zero at infinity, and T extends
to infinity, then U is everywhere zero, because both g and h are zero. Conversely, if U is
continuous within a closed domain 7" and the value of U at a point inside T is equal to the
mean value of U on the spherical surface with the point as center, then U is harmonic (Koebe,
1906).

From Gauss’ theorem expressed by equation 4 we have the following theorems:

(1) If U is harmonic and continuously differentiable inside a regular domain T and
vanishes at all points of S, then U vanishes at all points of T.

(2) Any function that is harmonic and continuously differentiable inside a regular domain
T is uniquely defined by its value on S.

(3) If the normal derivative on S of a function U, which is harmonic and continuously
differentiable inside a regular domain T, is zero at each point on S, then U is constant in 7.
Such a function can be uniquely defined by the normal derivatives on S apart from an additive
constant. '

(4) A function U defined by the relation

Q-g+hU=g,
on

where h, g are continuous on S and h = 0, is uniquely determined.

A Newtonian potential is a function that meets the following conditions:

(1) It is continuous at all points in space. :

(2) Its first derivatives exist and are continuous both inside and outside of S, but are
discontinuous in passing across S; the tangential derivative is continuous while the normal
derivative is discontinuous.

3) AU=0 outside S.

(4) AU is arbitrary inside S.

(56) U=0 at infinity.
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The foregoing leads to the theorem that a function which is harmonic in a closed regular
domain T+ S and is continuously differentiable is a Newtonian potential.

Simple and Double Layers

Set V'=1/r in equation 2, where r= V(x-§)2‘+ (y—m)2+ (z— )% and P(x, y, 2) is a
point outside 7. This function V7, as a function of integration-variables (£, 1, {), satisfies the
Laplace equation AV =0, From equation 2 we obtain

e o«

_ If P(x, y, z) is inside T, this formula fails because P is a singularity of V. Draw a small sphere -
3, around P, with radius & as shown at the right. Apply equation 2 to S and 3 and to the space .
T* between S and 3; then

() s, [0
AU , _A\rJ 18U |, | A/ 10U
_[;TdT_ LI:U an ran]edo- _LiI:U aon ron do

On 3 we ‘have d/on=—24/dr and do=h? sin 6d0dp. Thus

10U , U .
f 7 on do-—hjf o Sin 0dbdep.

Hence,

]imfj l&=0.

) sron
We have

jfu ( )d _ff—-da fLU(h,f),go)sinOd()dcp.

Hence ‘

ff U ( )—4m'Up.

h»-+0

Therefore

st == | ;[UB(S)———— do— f [ [ G

In particular, if AU=0, then

1 > ,
ry_1 {')___U:l do. (65)
n r '
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Next suppose that point P is on S. Draw a sphere 3, with P as its center and with radius A.

Let the part of 2 inside S be 2, and the region between S and 2, be S,. We apply equation 2
to S;, and make A— 0. As
f Udo
8§

is integrated over a hemisphere, we have

1 gr/)_ 19U
277_[_’; v on ron do

We say that f jp,/rda is the potential of a simple layer, and

_ff ()d__ ff Vcos(r,n)d

is the potential of a double layer. As we have seen, any potential consists of the potential
of a simple layer of density (1/47)(@U/dn) and the potential of a double layer of moment
U/4ar. The potential of a simple layer is continuous, but the potential of a double layer jumps
by a finite amount in passing across the surface, such that

Mq

Wi=Ws+2nmvs, We.e=Wgs—2mrvs; i
“therefore
We—Wi=—darvs. e

Now we consider the normal derivative. Take a point Q on S and let the inner normal be
ng; then, take a point P on ng. We have

ana ff a(nq> from V=ffg%do.

Furthermore, because

°(5)
r 1 or _ cos (r, ng)

we have

____”ﬂ_emi@_dc
anQ

Denote the variable normal in the integration over S by ng, then

J’f [ Ccos (r, ng) d°'+ff cos (r, ng) —cos (r, ng) do=W+C.

anQ r?
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We can prove that the second integral C remains unaltered in passing across S. (See, for

example, Kron, 1899; Bouligand, 1926; Sternberg, 1925b; Poincaré, 1899; Kellogg, 1929;
Gunther, 1934.)

=27 ug+e, 9K9=27r o te,
anQ

e [ [ Aeo2 a0y,

TRQ
=[], 2 (1
_f.];ﬂana (r)da,_
or
Loy,
2 anQ anQ T ke,
1/oVy ;_a_Ve; y
§(E+6na>—e'
If
Vi=ff/ida,
s r
then inside S,
lim_a_fflido-z._zﬂ- +ff Mdﬂ" )
dng s T Ha SMR r? ’

outside S,

im = [ [ & gg= ff cos (ng, 1) 4
hmaanfgrdo 27pqt+  bn ) o.

Take a Newtonian potential

(7a)

m;
r=3m,

Sl

if the volume distribution is continuous with volume density p, or

i
,

if the surface distribution is continuous with surface density u. Potential V is continuous
with its first derivative in the whole space and satisfies AV =0 outside the attracting mass,
and satisfies AV=—4sqp at a point of density p. The second derivative is discontinuous on
the boundary of two different media. The derivative of ¥ is discontinuous on the surface
itself. Take two lengths AB=dn, and AC=dn; on the normal at a point 4 on S;

or
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B

VB=VA+—Q£dne, 7 VC=VA+’a—Zdni.
one an;

On the other hand,

v
an€+6n1— 477""

where u is the density of the attracting mass. The tangential derivative, however, is con-
tinuous. If the layer is double, then

[ G- [

Hence we obtain Liapounov’s relation

6W [l 4

ane an,

=0,

—Wi=—da, W’6+Wi=—2fvi<l>do-.
s on\r

In this case, the tangential derivative is discontinuous. Hence any function that is harmonic
and continuously differentiable in a closed regular domain T+ S can be represented as the
sum of the potentials of a simple and a double layer on S.

Dirichlet's Problem

It is required to obtain a function ¥ such that

(1) It is regular at all points of T and continuous with its normal derivative as we approach’
the boundary S,

(2) It satisfies A¥'=0 at all points of T, and

(3) It reduces to a given function F on S.
This is called the Dirichlet interior problem. When we con51der instead of T the space outside
S extending to infinity and add a further condition that ¥ vanishes at infinity, then this is
called the Dirichlet exterior problem. In these cases, the function F is given on S; this is the
first boundary value problem. If, instead of the given function ¥ on S, ¥/dn should reduce
to a given function F on S, then this is the second boundary value problem. If k(aV/an)+hV=F
is given on S, then this is the third boundary value problem, where £, &, and F are continuous
and k and h are positive. The second boundary value problem of Dirichlet is sometimes
called the Neumann problem (Poincaré, 1899; Gunther, 1934).

The solution of the first boundary value problem inside a sphere is given by

u(x, y, z) o ff [cosrz(r, n) 2i11,r:|d0-’

where h is the radius of the circle. In fact, the first integral is the potential W of a double
layer, and the second that of a simple layer; both integrals are regular inside the sphere.
When P(x, y, z) approaches S, the potential W takes the form

375-031 O - 71 -2
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Wi=FS+Ws=FS+—1—fwada.
2 s

Ttq
Since cos (r, n) =1/2h on S, we have
1 F
Wi_FS+47rhf[grSQ do.
But
.1 (( F
Vi'*VS"m[ Lrsq do.
Hence,
Ui=Wi_Vi=FS.
Let R2=h2+r2—2hr cos (r, n); then
S
cos (r,n) 1 h*—R?
r2 2hr~  2hr® ‘
and we have ' . ‘

u(x z)=--1—ffF b —R? d
a4 dmh | Js= (h2+RZ—2hR cos a)3? 7

This is called the Poisson integral.

The Green function G is a function of two points P (x, ¥,z) and Q(¢&, m, {), where P varies
inside T and Q varies inside T and on S. Function G is regular in T except at P as a function
of £, m, {, and represents continuous potential in T+ S. It becomes infinite in the order of
the reciprocal of PQ at point P, such that

1
V(x—£)2+ (y—m)*+ (z—{)?

G(xayaz; fa N, C)_ =W(x,3’,z; ga n, C)

is a regular potential at P, and vanishes at all points Q of S and at all points P of T. To deter-
mine function G is one of the first boundary value problems because W takes the known
value — 1/r on the boundary S. Let u be regular in 7 and be continuous with its first normal
derivative as we approach S, then from equations 6a and 2a

where (6b)
' C=1/r+V.

The Green function has a reciprocity relation
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G(x’ Y, Z; fa-’n, g) =G(§a n, C; E 2% ) Z)v
and
1 h
G_; R

inside a sphere.

Physically speaking, ¥ is the potential of the induced charge
on the conductor S by a unit charge at P, and the Green function
G is the value at Q of the potential due to the induced charge
and the charge at P. This circumstance was the basis of the proof of the existence of the
Green function by Green, Kirchhoff, and Thomson. This was challenged by Lebesgue. The
rigorous mathematical proof of the existence of harmonic functions was discussed by Gauss,
Riemann, Dirichlet, Weierstrass, Hilbert, Schwarz, Neumann, Hadamard, and Poincaré, in
connection with the existence of analytic functions on the Riemann surface (Courant, 1950;
Weyl, 1923). Recent development—in particular, the theory of capacity— deals with bound-
aries with discontinuous normals on the point-set theoretical ground (Kellogg, 1929).

" Consider the first interior boundary value problem. The required function’is given on
S such that u;=F. The potential of a double layer is

_fjvcos(r,n)do_

u,i=27rv(S)+jLV(0') c08 es, ) gy F(s).

as

and we have

where ro¢ denotes the distance between o and S. Let

_ 1 cos (res, no) .
K(S9 0-) _277_ 71275 s
then

v(S)— Aff K(S, a’)v(a-)dg-___(.l

The kernel K(S, o) becomes infinite in the order of 1/r,s as o —> S, because

cos (ros, No)
'.'a'S

is bounded on S. In this case, the iterated kernel

K3(S, o) = f f j f K(So1)K(0102)K(00) dors dors

is shown to be bounded on S even when o— S. If the moment v(S) of the double layer is
known by solving the integral equation, then the potential u is known.
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For the second boundary value problem, we are given

oui_
o F.
Take _
u=f J’ g do,
sT
then

(S)+jf cos (r, ns) do=F(S).

For the third boundary value problem we are given

i 4 pi=F.
on

u=ff&d0';
s T

By b= —2W,L(S)+ffﬂ( )[C"s (r, ns) | h(")] —F(S).

Let

then

Thus the boundary value problem is reduced to the solution of an integral equation of Fred-
holm’s type (Plemelj, 1911; Neumann, 1905, 1912; Kneser, 1922; Wangerin 1922;
Kellogg 1929).

Poincare’s Fermula

Let V1, V2 be functions of the nature of potentials; ¥, depends on p; in Ty +8S;, and Vs
depends on ps in T>+S;,. In the whole space,

§ravare§ (LD Vi

0x

In fact, we draw a large sphere 3 with the coordinate origin as
center and large enough to include both T, and 7T%. In the space T
between S; and 3., equation 1 reduces to

szAVldr+f (E’V1 ¥y )df szaV‘da+

ox ax S f)n,z

As we increase the radius, ¥ is of order 1/R on S and

sty
on AR

is of order 1/R2, and do=R2dw, where dw is the element of a solid angle. Hence
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f Vza—;/;lda" is of order 1/R.

Next apply Green’s formula in §;+T'::

AL o,

 VetVidr [ ( Ve Vs .)d¢= | Voo do.
On S, we have
v __oT,
an; one

Hence by adding these two we obtain

L
%VzAV1d7+%<ax Viy. ) dr=0. ®

By exchanging V; and V;, and by subtracting the result, we get
] (Vz AVl—Vl AVz) dT=0, or f (prz—p2V1) dr=0.

p1=0 outside T1; p»=0 outside T». Hence

f prz d’Tzf p2V1 dr. (9)
Ty T,

This formula is analogous to the case of electricity in which 2 miVs —2 moV,=0.1f we let
V2= V1+dV1, p2=p1+dp1, then

j (Vidp1 — prdV'y) dr=0. (10)

Suppose that a system of masses m’, m”, . . . attracts another system of masses .
my, m{, ....Let¥V/, V', . .. be the potentials at the points m’, m”, . . ., due to all the

attracting masses mi, mj, . . ., and V', V", . . . be the potentials at points m}, mj, .

due to all the attracting masses m’, m", . . . . If the attracted mass is displaced, then the
work done is

e=2m(%8x+. . .)=2m8V1.

Let H=Z2mV;; then e=@8H. If the attracting mass is displaced, then ¥; changes to
Vi+8'V:y and 8’H=2Zm8'Vi. If these two displacements occur simultaneously, then
€=0H+8'H. Denote the volume of the attracted masses by T'; then

H= J; pVidr.
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Since p =0 outside T, we can extend this integral to the whole space. We have 8H = $p&V1dr.
If the attracting mass is the same as the attracted mass, then V=V, and 8H= [pdVdr.
By equation 10 we have

8H=fp8Vd7=f BV—; 4 dr.

Let W= §(p¥/2)dr. This is the energy of the system. We have 8 =¢, but AV =—4mp. Hence ,
W==——Lf VAd:

8 T.

From Poincaré’s formula, equation 8, we get finally

1 oV \? 1A% V2

=Ll :

8 dax oy dz (11)
GENERAL PROPERTIES OF EQUILIBRIUM FIGURES
Hydrostatic Equilibrium

Consider a mass of incompressible fluid rotating around a fixed axis without any external
force. Take the rotating axis as the z-axis and assume that the angular velocity of the rotation
is a constant w. The x- and y-axes are fixed in the fluid mass, and the center of mass is on
the z-axis. Take the center of mass as origin. Then denote by p the pressure at a point (x, ¥, z)

of the fluid. The pressure p depends only on x, ¥, z. The force acting on a volume element of
the fluid is

Xdr=2Lar, Ya&r=2Ladr, z2dr=2dr,
0x oy oz

where X, Y, Z are the components of force acting on the molecule at the point (x, ¥, z). Then

14 14 (14
X———.p-(,;;—{-wsz; Y=p$+w2py; Z=p5.

We obtain the condition of relative equilibrium, by writing U=V + («?/2) (2 +Y?), as

ap  oU ap__ oU, ap __ U
=p . ST P T —=p
ox ox dy dy 9z 0z
From these we have

p, 8, B, _ (ﬂ  , +1Qd)
—5;dx+ aydy—k—azd? p axdx+ay y+-dz)-
Hence,
dp=pdU.

If du=0, then dp =0, and therefore p is a function of U only. The density p is also a function
of U only. The surface U= constant is called the “level surface.” Consequently the level sur-
face is the surface of equal pressure and also the surface of equal density.
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On the surface S the pressure p=0; hence U is constant on S, and the free surface is
accordingly a level surface. If there is no rotation, then U=V. In general AV =—A4mp; this AV
is a function of U. If the surface consists of several pieces of surfaces, then on each of the
surfaces S;, we have

2
U= V+%— (x2+92) is a constant;

that is, the equation for the surface is U= constant. U has the property of a potential, and

the gravity
) 2 3 2 U \2 12
[Go+ )+ (5]

is zero nowhere on the surface. Thus 8U/ox, 8U/dy, 0U/dz cannot vanish all at once. Suppose
that 8V/8z#0. Then U=V+(w?2)(x*+?) can be solved for z, and S is a regular surface.
The surfaces U= constant, p= constant, p= constant coinéide and become what is called
the “equipotential surface.” The force is directed normally to the equipotential surface.

Symmetry Plane

Theorem: z=0 is always a symmetry plane of the body 7.

For proof, we take the locus 2 of the middle point of the chord -
parallel to the rotation-axis. When the chord intersects at more
than two points with S, we take the middle point of the chord
inside S. If 3 is not a plane, then there is at least one point
Q(x0, o, 20) inside T or on S, such that this z is the upper bound
of all values of z of 3, and there is at least one point Q on X whose
z is smaller than z. At first suppose that Q is inside of 7. The
straight line x=ux, y=10 intersects S in a finite or an infinite -
number of points. Let Pi(xo, ¥o, 21), Pa(x0, Y0, 22) be such points
which are the nearest to Q(xo, Yo, 20). Suppose z1 >z then
[Vix, v, z)]+ (0?/2) (2249?) is constant in each component of
S. Hence

Vxo, ¥o, z1) = V{xos ¥o, 22). 12)

Denote the pfojection of S on the plane z=0 by D. Then
V(g 7, 2)= L dxdy j 1, (13)
L T

where L is a straight line parallel to Oz inside of 7. Let the inter-
section of L with S be 7, z"; and r(z, z1) the distance of the points
(x, ¥, 2) and (%o, Yo, z1); and r(z, z2) the distance of the points
(x, ¥, 2) and (xo, o, z2). The centers of mass of two chords (z'2")
and (z;22) have a common z-coordinate. In fact, by our assumption,
r(z,z1) > r(z, z) for every z. Hence
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2 1 4 1 .
fz" r(Z, Zl) dzsLﬂ r(Z, 2'2) dZ. (14‘)

From equations 13 and 14 we should have
V(x0, y0, 21) < V(x0, 30, 22)- (15)

This contradicts equation 12,
We must next consider the case when the upper bound of the z-coordinates of all pomts
of 3 is attained at a point (xo, yo, 20) on S. If the gravity at (xo, e, Z0) is zero, then

(8/3z)U(xo, vo, 20) =0; thus (8/92)V (x0, y0, 20) =0.

If the gravity at (xo, Yo, z0) is not zero, then S has a continuous normal both at (xo, ¥o, 20)
and near (xo, ¥o, zo). Then the straight line x=x,, ¥= o, must touch S at (xo, Yo, z0). Hence
in this case, too, we should have (8/9z)U=0 and (9/0z)¥ =0. This relation is impeossible.

It is permissible in the case of a cylinder that ¥ is independent of z. A cylinder has a
symmetry plane perpeﬁdicular to Oz: hence I is one plane region. Accordingly S has a sym-
metry plane perpendicular to the z-axis. As we have taken the center of mass of T as the origin,
this is the (xy)-plane. Since the rotation axis is perpendicular to the symmetry plane and
passes through the center of mass, this is one of the principal axes of the body T.

As a corollary, there are only two points in which the straight line parallel to the rotation
axis meets the surface S.

When there are several components of S, they are not 31tuated in the direction parallel
to the z-axis, but in the direction perpendicular to it. If several components have a common
point, the point should be on the symmetry plane. A straight line passing through this point
and parallel to the rotation axis does not intersect any component of S. Each component:

mass of the fluid consists of only one boundary continuum; it has no hollow part (Lichtenstein,
1928, 1918).
Gravity

Theorem: Any point where gravity vanishes lies on the plane z=0.

Take a point (x', ¥, z') with 2/ >0 on S. Denote the part of T which is above z’ by ©’,
and its image with regard to z=2z' by ®’. The component along the straight line x=x', y=1'
of the attracting force of ®' + @' at (x', ¥', Z') is zero by symmetry. The component along that-
direction of the force due to T—®’ — @’ is certainly negative. Consider that (3/3z)V (x', y z')
<0; hence (8/32)U(x', y', z') < 0. The equality must occur on z=0. -

Theorem: Gravity is directed everywhere inward. If T consists of several bodies and each

“of the components has continuous normals, then the bodies cannot have common points
but must be separated. The gravity at a common point is zero, and the common point is a
point of discontinuity.

Let a point of S be P(x, y, z). The Green function G(%, %, Z; x, ¥, z) has continuous partial
derivatives of the first order on S as a function of x, ¥, z. The derivative(3/an)G(%, 7, 2; x, ¥, z)
is continuous, and G(%, 7, z; %, v, z) > 0 for a point (%, ¥, ) inside T. Hence (3/3n;)G(%, ¥, Z;
P) = 0; I shall prove that only the inequality holds.

Take a point (x, ¥, z) on the normal, very near point P. We can write G(x, , z; x, ¥, z)
=1/r+g(x, ¥, z; %, ¥, z), where r is the distance between (x, y, z) and (x, ¥, z). Gravity gis
continuous inside T and on S, and regular in T, and takes the value — [(x—x")*+ (y—y")?
+(z—z')?]-"2 at (%', ¥', z') on S. This is negative and takes the minimum value at P.
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Hence (8/0n)g(x, y, z; P)=0. The normal derivative of 1/r at P is positive. Therefore
(0/an:)G(x, y, z; P) > 0. | |

We can prove that (8/an;)G(x, ¥, Z; P) >0 at any point (%, ¥, Z) inside T. In fact,
(9/on:)G(%, 7, 2; P) is a regular potential function if P is fixed. This cannot have a minimum
inside T. The derivative 8G/dn; is equal to 0 on S and =0 inside 7. Hence inside T it should be
either always positive or always negative. At a point (5, z) we have shown that 9G/an; > 0.
Thus it should be always 9G/an; >0 inside T. i

By the reciprocity relation of a Green function, we have G(x, y, 2; %, 7, 2)=G(, ¥, 2; %, ¥, 2),
and hence (3/0n;)G(P; %, 7, Z) > 0. By writing AU=—4mp+2e? after differentiating equation
17 which will be proved immediately we obtain

W__ 1 )
vl By G(P x, ¥, 2) (2w —4mp)dr.

Since (8/on:)G(P; %, ¥, z) >0, oU/an; > 0, if 2w® < 4darp.

Since the gravity- should be directed inward at the contact point, it should be zero.
Hence, the curvature should have a discontinuity at the contact point; that is, there is a
conical point as in Darwin’s conjectural double-star model (1906, 1910).

Angular Velocity
A sufficient (though not necessary) condition for equilibrium is that the force at every

point of the free surface be directed inward. Otherwise the equilibrium would break down.
. Hence

(?gr_ < 0
dane
therefore
J oy do <.
one
From equation 3 we have
f AUdr <0.
T
Therefore
j AVdT-l-f 2widr < 0.
T T
Hence,

—471'[ pdfr+f 2widr < 0.
T T

Let M be the mass, and T be the volume. Then —4nM + 2w?T < 0. If thé density is p, then
20w? < 4mp. (16)
This is called Poincaré’s inequality (1885). The inequality 0U/dn; > 0 has been proved under

the assumption 2w? < 47p, and the latter inequality has been proved by Poincaré under the
assumption oU/an; > 0.
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We shall examine whether the gravity becomes zero at some points although the proof
is unnecessary if S is continuously curved.

M Ulx, v, 2) "'V(x, v, z) + (@0?/2) (x*+y?) should have a constant value on each of
the components.

(IT) If the fluid cannot stand any tension (Zugspannung), the gravity should be directed
inward or be zero on the surface S. o B

Proposition II follows as a necessary condition from Proposition I. If Proposition I is
satisfied, the pressure exists in the whole 7, and equilibrium takes place; that is, it is a
sufficient condition to achieve equilibrium. Let us proceed to the proof according to Lichten-
stein (1918).

If @? > 2mp, then Proposition I is not satlsﬁed U=V+ («*2) (22 + ) takes the value
U, on S, and AU=—4mp+2w? inside T. Take a point (%, 7, Z) inside T and let the Green
function at (%, ¥, z) inside T with respect to T, which vanishes on S, be Go(%, 7, 2; x, ¥, z).
Obviously Go(%, ¥, Z %, ¥, z) > 0 for all pairs of points (%, ¥, Z) and (x, y; z) inside 7. We
then have

Uz, 7,2)= Uo_t_qu_r f Go(%, 7, Z; %, y, 2) (2w* —4mp)dr. 17
T B
Let W assume a value such that AW =0, and let W+ 1/r=G. From equation 2,

—f WAUd7=f(U———W' do.

From equation 6 we have

Hence,

But from equation 6b,

» Accordingly,
1
U= UO—ZL—‘; f GoAUdr.

If we suppose w? < 2mp, then by equation 17, U(%, ¥, ) > U, at every point (x, ¥, 2) ‘
inside T. Since the external pressure is zero on the boundary, pressure always exists inside T
because of this inequality. Hence, the proposition has been proved.

If w2 = 7p, then an equilibrium figure cannot exist for a convex body. The proof is based
on the extremum property discussed in Blaschke (1916).

Crudeli (1909, 1910) obtained a sharper limit than the one in Pomcare s inequality.

We have at first U=V + (0%2) (2+y2)=C,dU/on <0, and AU= constant inside T.
From equation 6
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Pes
=
| T
on r dn T
Substituting AU = AV'+ 2w? = 2w —47rp (f p= const.) gives
2__
drU=4mC+ f 19U 4202 dmpy, (s)
sron p

because U=C on the free surface S, and

f 9 (l)do——-—ékn', V=p dr,

an T r

Denoting the inner normal at a point A of an equipotential surface by n; and auscrentiating
the above equation give

%a_q:_a_f 19U, 2(02—47792 v
N

dn; on; r an on;’

where r is the distance between an inside point P on the normal n; and the point 4. At the
point A, this expression is

47_‘_(6U> — lim d l_fi]do__ZwZ—él«'zrp (_a__lf) .
A

on; a_r; sron p oni/a

But from equation 17 where we write — u=08U/dn, we have

d 19U
man, ST on d0'—27r(

BU) +J’ U cos (ro, mi) do
s

on; on rg

2

where AS=r,. Hence, we obtain

U BU cos {ro, ni) _20*—4mp (ﬂ) .
27 (anl) f an s do p oni/a
By the relation

aV_aU  ?3(x2+y?)
on; dn; 2 on;

AU\ _ [ aU cos (ro, 3 (x2+y?
2(w?—7p) (——l)A—p fsan cos (:5 ) do= wz(w2——21rp) [________(xamy ) ]A'

Let A— S; if A is the point where the tangent plane to S is perpendicular to the rotation
axis, that is, where
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[8 (x2+y2) ]
Pockih Nk AL Y A — O,

an,- A
then at that point 4

2(w?—7p) (3U>A_pj f’_q_c_oi_(_’_g’_"'ildo.;_-o.
S

an; an ra
Where,
cos (ro, ni) >0, aUlon <0.

Hence,
Consequently
and

w?—mp <0.
Thus we get Crudeli’s inequality 7

w?<mp. (19)

As a corollary, this relation holds true for an elliptic cylinder (Tisserand, 1891, p. 107), be-
cause, from w?=4arp{ab/(a+ b)?], we get

a—-b= 1 w?
a+b wp

By computing gravity, von Zeipel (1898) showed that

w? 4
20p =0

because gravity on the equator

w? 3 arctan e—e(3—52)]'< 0

&a=—4arpa [I—ZWP (3+€2) arctan e—3e

Nikliborc (1929) showed that Crudeli’s inequality holds even when the equilibrium figure
consists of a finite number of bounded domains.

Ellipticity

1 3T\ /3
Jp war=am ()™
The integral on the left-hand side taken over the volume T of the sphere drawn with the

center at the point in question is equal to the right-hand side. Let the radius of the sphere
be R and the domain common to K and T be K;. Then,

We first prove that
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3T\ 13 1 J’ 1 f 1
4«77( 43_;> j T dr o dr+ i 7 T

[ 1, Tk
KJZ d7'+R2 fK_Kl dr= Klr2d7+ B

1, (1, L,
fT ) dr= o dr+ dr

K, I?

1 1, T—K
sfxlr2d7+R2f_K1dr Kl,zd+ e

Combining these two equations provides the formula we are to prove.' Since

% T:—x-l- dxdydz,
we have
. 13
8 < f 1 i dz<—~<z—§> .
Similarly,
2, [ <t ey
ay|’ dz 3 dw) -
Hence

T <3560

Now let B be a pbmt on S and assume that the gravity reaches its maximum at B; Bis
obviously on the symmetry plane. The gravity at B is either directed inward or equal to zero.
The centrifugal force at.B cannot be larger than the attracting force. Hence

e[ YT <5 D

\/_ 3w? <3T> | @0)

Accordingly, the equilibrium figure is inside the circular cylinder of radius ao (Schmidt, 1914;
. Lichtenstein, 1918). Mazurkiewicz (1926) proved that if b > a, then

Hence,

b<CT3, C = 168050



22 THEORIES OF EQUILIBRIUM FIGURES OF A ROTATING HOMOGENEOUS FLUID MASS .

where a is the distance from the rotation-axis and 2b the thickness of the figure in the
z-direction.

Niklibore (1931, 1933) proved that if the meridian section of the figure of the spherical
type is monotonous for z >0, then the ellipticity b/a < 10 and furthermore, that for a figure
for which the highest point lies on the z-axis, b/a < 5. For a plane figure, Nikliborc (1932)
and Blaschke (1932) proved similar theorems.

Merlin (1935) proved that

417p (37')

b 1 w? (;;_;_ 5/3

—< 1-—67

where J is the moment of rotation around the Oz-axis.

Stokes’ Theorem (Tisserand, 1849)

Suppose that the density distribution inside T is arbitrary and that the level surface S
is defined by

U=V+1wt (2 +y) =C
with the mass M contained inside S. Then by Gauss’ theorem,
f —do-——fAVdT——4«1rfpd'r=—41rM
50

in an interior point, and AV'=0 in an exterior point. We vary the mass distribution _ir}xside‘
by keeping the level surface S fixed, and of course with M fixed. Denote the resulting varia-
tion of ¥V by V', that of U by U’, and that of C by C'. On S, we have U'=C’, and

f v do=—47M.
s

Outside S, we have AV'=0. Write W=V —V", then on S we have #=C—C’, and

f Q-[Kdo 0.
an
Outside S, we have

AW =0.

Draw a sphere £ with a very large radius R so that the whole of S is contained within
the sphere. In the space T’ between X and S we have by Green’s formula, equation 5,

L () () [ e

f W—a—zda
on
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tends toward zero in the same order as 1/R, as R—>». Therefore, we obtain

LI{(%)Z‘L(&;D +(a;f) ]df 0.

Hence W= constant in T". Since W becomes zero at infinity, this constant is zero. Therefore,
W=V—V' =0, and ¥=V". Stokes’ theorem states that the potential  is determined uniquely
by S, w, and M. Accordingly, U is determined uniquely by S, @, and M and does not depend
on the mass distribution inside S.

Similarly, the direction of the principal axes of inertia, the moments of inertia, and the
products of inertia are determined uniquely by S, @, and M. In fact,

_ =1 .
Il—fopd'T— 4'71'.’1 xAVidr.

By Green’s formula,

Wiy ox
L= 471'[( Ulan) do,

since Ax=0. But on S we have V;= V,l oVilon=0V[dn. Hence, I, is determined uniquely
by the uniquely determined ¥ given in the theorem. We get similar results for

f ypdr, f zpdr,
T T

and accordingly the center of mass is determined uniquely. Similarly, we can determine
uniquely

fxypdq', fyzpdr, fzxpdr, j (2% —y?) pdr, f (y2—2%)pdr,
T T T T T

and

J; (z22—x2) pdr.

These six quantities determine uniquely the principal axes of inertia and the principal
moments of inertia. We can determine the value of 7 at any interior point when S, @, M,
and the value of ¥ on S are given. This is a boundary value problem called the generalized
Neumann-Dirichlet problem (Crudeli, 1909, 1935).

We know that in the exterior space AV =0. From equation 2a, we have

ol

_r_1d¥s) o _
[(V on r6n>do- 0.
s

We approach a point Q(xo, Yo, z0) on S by remembering that U=V + (©*/2) (x2+y*); then
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2 2
hmf Vs—d(r—j 19U, L3 +9") 4.

sTo an

By equation 7a we have

e al

hmf Vs—d(r—-—ZTrVo—%-f VS-—dO'
From equation 18 and 9U/dn < 0, we see that

l&d0=_4wp—2w2
sToon p

Vo.

Hence,

a1

2.4 a2
2(w2—mp)Vo— f VS————dcr— 1M do

2 sTo on

If @? # 7p, then

a(]./ro)
Vo - 7T;O)j Vs =k
Fe pw la(x2+y2)
4{w?—mp) Jg an

Thus this reduces to the integral equation of the Fredholm type

cos (r, n)

Q(u, v) +y.fﬂ(us, vs) do=F(u, v).

If [|u]| <, then this equation has no eigenvalue (Plemelj, 1904, 1907, 1911; Kneser, 1922;
Kellogg, 1929; Goursat, 1923). Poincaré’s inequality states that w?/7p <2. Hence,

T 1
= = <1
1] w2—7'rp (wzlwp)—l’ Iand “‘(’I 1
If u is an eigenvalue, then we denote by Y1, . . . Yy, the linearly independent solutions

of the homogeneous integral equation
' f y.cos () oo
il 2wy
It can be proved that

fY;J"do-=O (k=1,2 ... ,m).
s

Hence, even when p is an eigenvalue, the solution of the nonhomogeneous integral equation
exists, provided that there are m solutions instead of one. This is the case of bifurcation.
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Thus we can determine ¥ when S, w, M, and the value of V' on S are given. This is called
the Stokes problem. )

The problem of obtaining the surface S when the values of g over the whole surface S are
known can be discussed in a similar manner (Brillouin, 1925; Mineo, 1927, 1933).

This problem of determining S when the distributions of g and dg/dn at any point over the
unknown surface S are given, and where the direction of the normal is known by astronomical
observations, has an important bearing in geodesy. We do not know yet what is the real
ficure of the earth; we don’t even know where the real center of the earth is. The present
method of calculation consists of successive approximations, starting with Bessel’s or Hay-
ford’s spheroid. This is the problem for geodesic satellites which O’Keefe, Kaula, and others
are working to solve. It is the inverse of Neumann-Dirichlet’s generalized boundary value
problem. Yet this is one of the unsolved problems in mathematical physics (cf., Gunther,
1934). However, recent observations of earth satellites are providing a means for determining
the observers’ coordinates relative to the mass-center of the earth.

Hamy (1887, 1889) proved that we can determine the ellipticity uniquely when the law of
density is given; he also proved that the equilibrium figure of a rotating heterogeneous mass
cannot be an ellipsoid with three unequal axes but be an ellipsoid of revolution. Poincaré
(1885, 1902) proved that, if the surfaces of separation of such a heterogeneous mass are ellip-
soids, then they must be all confocal. Similar problems were investigated by Radau (1885),
Callandreau (1889), Véronnet (1912), Dive (1926, 1927, 1930), Wavre (1927, 1928, 1929), and
Merlin (1927, 1930). In particular Wavre (1932) led the problem to the solution of an integral

_equation of Fredholm’s type, and Dive (1926, 1927) extended Hamy’s theorem.

Limit of Angular Velocity
If we consider a body rotating with angular velocity w around a fixed axis, then the
moment of inertia around that axis is J= [ pdr(x2+y2). When the body is deformed such
that the projection of the displacement of a surface element do- on the normal is {, then J
varies by the amount dJ= [ {pdo(x®+y?).
If we let U=V+ (®*2) (x*+y?), then the Newtonian potential energy is

(o
W'——f 2d’r,

where

y= f dr.
r
Then,
w? w2
dW+~2— dj=f 4 [V+7 (x2+y2)] p80'=f Uipdo.
In equiﬁbﬁum, .U‘= constant = U, on the surface S. Then,
dW+% dj=Us, f tpdo="UspdT.

If the body is deformed similarly to itself, then W and J vary as T%/3, Hence,

35-031 O-T71 -3
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dW+—2—dJ=§£..
W+92—'J 37T

therefore

3 U=

Now AU=2w?+ AV=2w*—4mp. Since we have 2w? < 4mp from Poincaré’s inequality, we

must have AU <0, Thus U cannot have a minimum inside T. Since U=1U, on S, we should

have U > Uy inside T. If AU=0, then U="Uj, and if AU >0, then U < Uy in the whole interior.
Consider the integral [ Updr=2W + (02/2)J. As AU £10, the left-hand side

fUpd‘r%prod'r=pU0f d7=onT=g (W+%:J).

Hence we obtain the theorem

2 2 )
AU <0, g(W+%J><2W+92~J, W> 0
2
AU=0, g(W+“’—J)=2W+9’—21, W=t
2 2
5 w?
AU >0, §<W+2J)>2W+ I W<l

Suppose that « varies continuously and the figure deforms continuously if p remains
unchanged. We have seen that

2 .
' dW+% dj+ wjdw=g pTdUs, T=constant.

Since the figure is in equilibrium, # + (®?/2)J is a maximum or a minimum if dW+(w2/2)dj=O
The remaining part is w/dw= (3/5)TdU,. Hence dUp/dw >0, and U, increases as » increases.
Since V is a Newtonian potential, we have V'=Uy— (0?/2)(x*+ *) on S. If the surface S
intersects the rotation axis, then U, is the Newtonian
potential at the pole. As w increases, the potential in- s
creases, but Uy cannot be greater than 27R?, where R is
the radius of the sphere-of the same volume as the body T.
If we draw a sphere 3, of radius R around the point in
question, we then have three domains, B, K, and A. The
potential of 4 at M < AR, and the potential of B at
M > B/R=A[R. But the potential of S=the potential
of K+ the potential of 4. and the potential of 2= the =
potential of K-the potential of B. Accordingly, the
potential of 3, > the potential of S. Thus 2rR? > V. The potential of a sphere is 2mR?p, because
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47R*dR
R P

Now dividing W + (?/2)J= (3/5)pUsT and wJdw= (3/5)pTdU, side by side gives,

wJdw =§£]2
— .
W+%J Us

As w increases indefinitely, there would be a time when w? finally exceeds 7. Then, as W < w?],
we must have

w?] 2

>_
— >,
w+ey 3

2]
Hence
2do _ dUs
3 [O)] < Uo.

If w increases indefinitely, then so must U, But Uy < 27 R2. Hence either @ must stop in-
creasing, or the equilibrium figure does not cross the rotation axis. The latter case is of an
annular or a detached double-star form. In the former case, there is a limit for the angular
velocity . For the spheroidal figure of equilibrium we have w < 47X 0.112, and for the
ellipsoidal figure of equilibrium we have w <47Xx0.093. From this point of view, it is possible
that there exists a succession of equilibrium figures passing several maxima and minima of
o in succession. In such cases, the foregoing reasoning cannot be applied, and w can increase
indefinitely. This reasoning holds only in a successive interval between a maximum and the
consecuiive or the preceding minimum (Poincaré, 1902)..

As a corollary, the axis of rotation of an equilibrium figure with a sufficiently large value
of w does not intersect the free surface of the figure. It may be either of annular form or of
detached double-star form.

Rotation Axis

We shall now examine whether there may exist equilibrium figures with nonuniform
rotation. The center of mass is supposed to be at rest; it makes no difference whether the
fluid is solidified or not. If the fluid is solidified, then the motion around the center of mass is
a Poinsot rigid-body rotation. By the principle of D’Alembert, the virtual work done by any
displacement compatible with the constrained motion is zero. The constraint in this case is
the incompressibility of the fluid, and this is expressed by

] ) 3 o
o 6x+ay 8y+az 8z=0.

There are three kinds of virtual displacement:

(1) The displacement of the whole mass as a solid; this is Poinsot’s motion around the
center of mass.

(2) Deformation of the body.

(3) Molecules are displaced on the surface of constant density; since the surface of

equal density is an equipotential surface, we have
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F) 9 9
9P sy + 2L 5y 4+ 2P 5,=0.
dx dy 7 0z

The surface of constant density remains unchanged by this displacement. Hence the
external shape remains unchanged. Let us take a point of mass m with coordinates x, y, z.
Let the components of the instantaneous rotation around Ox, Oy, Oz be w1, wz, w3; then

X= Wzy — W2z, Y= w1z~ W3X, Z=@wex— 1Y,
and
%= (03y — w2z) + (@3y —axz),
7= (@ z— w3x) + (@12 — wsx),
2= (w2t — w15) + (o — dry).

As in relative equilibrium, there should be equilibrium between the attraction force and the
force of inertia m¥, mj, mz . Suppose that the rotation axis is along OP (w1, s, w3) att and.
along OP' at t+dt. Let 0Q=PP’[dt, and suppose that it takes the limiting position OR as
dt— 0. The projection of OR on the three coordinate axes is &, @2, ws. If we take OR as the
Oz-axis, then @;=@3=0. The inertial force due to angular ac-
celeration has components @y, — @22, 0. We apply D’Alembert’s ,
principle to this virtual displacement. Since the form of the
body remains unchanged, the work done by the attraction is
zero. The work done by the centrifugal force is (w?/2)8J, where
w?=w}+ wi+ wj, and, since J remains unchanged this work 5
becomes zero. The remaining part @s;2m(ydx —x0y) must be
zero in equilibrium. Now we can choose the virtual displacement
so that 3m(ydx—x8y) is not zero. It is sufficient to consider a
current around Oz. This sum is equal to the area on the xOy plane bounded by the projection
of this current on that plane, and is not zero. Hence @; must be zero, that is, the motion must
be uniform. Thus it is impossible to have an equilibrium figure of nonuniform rotation (Poin-
caré, 1902). ’

Furthermore, the rotation axis must be the axis with the largest principal moment of
inertia; that is, the smallest axis of the ellipsoid of inertia. This can be proved from the study
of the rotation of a solid body (Pizzetti, 1913).

LIAPOUNOV'S THEOREM

lidpounov’s Proof

Liapounov’s theorem states that a sphere is the only stable equilibrium figure at rest.
This theorem is said to have been discovered by Giessen (1872). Poincaré proved the theorem
in his lectures (1902) on the equilibrium figures by referring to an electrostatically charged
sphere, on the basis of Dirichlet’s criterion of stability. Suppose that the free surface of a
body T is an equipotential surface V= V,; then the potential at a point is

V=IM
.Tr’
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where V is continuous on the free surface and zero at infinity. We have.

fAVdT=—41rf pdr=—47M.
T T

Moreover,

f LA
S

one

and d¥V/one < 0. Now consider the distribution of an electrically charged layer of total charge
M in a suitable unit in equilibrium such that the potential ¥’ on the surface is ¥y, the potential.
in the outside space is ¥/, and the potential inside the surface is V' =V,. At infinity, V' =0.
The potentials ¥ and ¥’ both satisfy the Laplace equation, and both are equal to ¥, on the
free surface. Hence, because of the property of a potential, these two functions should
coincide. Poincaré proved the lemmas that the potential of a sphere at its center is the maxi-
mum of the potential of any body of equal volume, that a sphere has the minimum electrical
capacity among bodies of equal volume, that the electrical capacity is a minimum for a sphere,
and that W= [(pV/2)dr is a maximum for a sphere among all bodies of equal volume-
(Poincaré, 1887, 1902).

" Liapounov (1884, 1904) proved the theorem with his stability criterion. Denote the
‘moments of inertia by

Sr=f (y2+22)dr, Sy=f (22+x2)dr, Sz?f (22 +92)dr,
T T T
Px=f yzdr, Py=f zxdT, Pz=f xydr,

T T T

D=8:S,S.;—S:P3—S,P3—S.P>*—2P,P,P,,

and

V=p dL, Tm=%fT (u2+v24w?)dr

T I

with the condition that

fxd7=f yd’r=f zd7=f udf'—“f vd7'=j wdr=20,
T T T 7 T T

where u, v, w denote the components of the displacement. Denote by Jp the moment of
momentum around the center of inertia, and write

H—2(J2———>D var).

According to Liapounov, the necessary and sufficient condition of equilibrium is 8II=0.-
If 11 is a minimum, then the equilibrium is stable (Lejeune-Dirichlet). This criterion of
Liapounov contains the criterion of Poincaré, (1/2)(J2— [r¥d7) =minimum, and can
define stability, whereas Poincaré’s criterion can say nothing about stability.

Denote by n the shortest distance between a point on the surface of an equilibrium figure
and its corresponding point on the surface of the distorted figure, counted toward the outer
normal. Let n=n,; 4+ 8n and let
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: anda=O, fxﬁndo-=f ando-=f zondo=0, (21)
s ] s s s

and
2
U=V+5 (x*+57).

Liapounov obtained

oll=— [ Y (sn)2do—p [ [2BRdodT’ gy,
s s
an r
—wz 2 2 :
Q—S— (x2+y2) 8ndo ), (22)
z S .
2 2 2 2
=§-); (L szndo-) +%y— (L yzSndo-) .
If equation 22 is positive for all displacements &n satisfying equation 21, and if dn=—[x

cos (n, y)=y cos (n, x)]0, for w # 0; and if Sn=— [y cos (n, z) —z cos (n, ¥)]0z— [z cos
(n, x) —x cos (n, z)]0y— [x cos (n, y) —v cos (n, x)]0, for ®=0, then the equilibrium
figure is stable, where 0y, 0, 6. are independent of %, ¥, z.

Let the radius of a sphere be R; then

U_av_ 4 o
on on 3 p

82H=p[%wkf (8n)2d0'——ff M].
S S R

takes the form

Let x=Rsin 0 cos s, y=R sin O sin ¥, R=R cos 6, and

on= Ew: Ym(e, ‘I’)- l

m=0

Then equation 21 gives Yo(0,¥) =0, Yi(6, ¥) =0, and we have

L (6n)2do = ,Zo fs (Ym)2dor.

Furthermore by the relation

V(0,0 dr'_ 4mR
L r =om+1 (0¥

we obtain

ondn'dado’ _ = 1 .
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Hence

=7 3 PR 2 §m+? fs (Fn)?do.

This expression cannot be negative and cannot become zero unless all 8n are zero simulta-.
neously. Therefore, a sphere is a stable equilibrium figure.

Isoperimetric Problem of a Sphere

Given a closed curve in space, construct the surface of minimum area enclosed by the
curve. This is Plateaw’s problem, one of the isoperimetric problems concerning a sphere
(Blaschke, 1916, 1921; Bonnesen, 1929; Tonelli, 1923; MlIlkOWSkl 1953; Lichtenstein, 1929).
A more general problem is to find the configuration of the maximum of a certain volume
integral when the surface area of the configuration is fixed. A closed convex surface which
is regular analytic and is of positive curvature everywhere is called an ovaloid, the only surface
of fixed mean curvature. If we deform an ovaloid continuously and isometrically (lingentrew),
then it displaces as a rigid body (Starrkeit by Weyl and Blaschke).

Theorem: Among all closed surfaces of given volume, a sphere has the minimum surface_
area. -

For proof, we employ the symmetrization method of Steiner. Suppose that the ovaloid K
consists of vertical columns parallel to the z-axis. Displace each column parallel to itself so
that the center of mass is on the plane z=0. Then K becomes an ovaloid K* of the same
volume symmetric with respect to z=0. In order to prove that K* is an ovaloid, it is sufficient
to prove that the straight line joining two points Pr*, Qi* of K* is inside K*. Let Ps*, * be
the mirror images of P*, (y* with respect to z=0, and the points of K corresponding to
P, Qi, Ps¥, O of K* be Py, Q1, P2, Q:. Then, since K is an ovaloid, the convex quadrangle
P10y P:Q: is inside K. As P, Q/*, P, Q5% are obtained by symmetrization from Py, O, P2, Q2,
the quadrangle P*Q:*P3#Qs* is inside K*. Hence P#Qf* is inside K*.

Letf(x, y), (= 0), be the length of the vertical column passing through the point (x, ¥, 0).
The volume is T'= [[ f(xy)dxdy; function f(xy) is the same for K and K*. Hence the volume
is conserved. That the surface K* is regular and analytic can be seen easily, and the proof
that K* is of smaller surface area is seen in the following manner:

Divide the surface S of the ovaloid into two parts S and S by the closed curve on the
vertical tangent planes and denote them by the Gaussian parameters u and v.

Z(u, v) =x(u, v) =2(u,v),  F(u, v)=y(u, v) =y(u, v).
Let '

z(u, v; 1) =E§_—ti(u, v) —-l-fz_-gz(u, v),
®(r) =U VAT B2+ C* dudv,

=6(y, z) %1+t - 1—1t

au, v) 2 A= 2 4,
d(z, x) _ 1+t 5 1—¢t
B= a(u, v) 2 B 2 B,

00, 5,
au, v)’
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@ denotes the area of surface S. It is sufficient to prove that ®(+1) —2®(0) +®(—1) = 0.
We see that

o (1) = f [A(B+B) —B(A+A)1*+ [(A+4)+ (B+B)IC* )

4(4>+B>+C?)

and for —1 <t<+1 we have ®"(¢) =0. Hence the area ®(t) is decreased by the sym-
etrization. Consequently a sphere has the minimum surface area among all ovaloids of
given volume.

The rigorous existence-proof of such a limiting ovaloid, a sphere, with

FBFn, ,!llan=F29;

where T denotes the sphere, was completed by Gross in 1917. Blaschke proved the existc—;née
of the limiting figure by referring to the Bolzano-Weierstrass theorem. We can choose from an
infinite sequence of uniformly bounded convex bodies a subsequence of convex bodies K,
Kz, . . . converging to a convex body L, such that

L=1im K,.

n—o®

Here “uniformly bounded” means that the body is contained in a hexahedron or a sphere.
Blaschke proved the following therorems (1918). Let B be an ovaloid, F its surface area,
and E the mean of the distances of any two points P, Q in the domain. Then

N
E=f f LB, (PQ)dFsdF,.

A circle has a minimum E for a given F. Between the integral invariants E and F of B, we have
34.52.q3E2—21-F = 0.

E = E*, where E* is a figure obtained from E by symmetrization. The solution, if it exists,
should be a cricle. '
Let

i=[ [ reroarara. £ <o

J has a maximum value for a circle. For f(r) =1/r, we have Liapounov’s theorem.

Carleman’s Theorem (Carleman, 1919)

(1) If f(r) > 0 is decreasing, then J has a maximum value for a circle.

2) If f(r) > 0 is decreasing and if ®(P)= [3f(rpq)dFq has a constant value on the
boundary of domain B, or, if the area of domain B is kept constant, then domain B is a circle
for 8/ =0.

Lichtenstein (1919) extended the theorem to three dimensions, and also to nonhomo-
geneous bodies. Consider a body By consisting of a finite number of pieces bounded by
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analytic surfaces. Any mass may have a point or line in common with another mass. The mass
distribution is supposed to be such that the density p varies continuously between its minimum
p' and its maximum p". Let B, be the total mass in By such that its density = p. Mass B, may
consist of a finite number of pieces, but is bounded by analytic regular surfaces. For p=p",
the total mass B, reduces 1o a finite number of analytic surfaces, or a line, or a point. Denote
the volume of B, by V(p); then V(p1) > V(p2) for p1 < ps. Furthermore V' (p”)=0; also,
V(p) decreases monotonously and continuously with p, but may be stepwise discontinuous.
Lichtenstein proved that the energy is a minimum for a distribution of B, in the form of
concentric spheres among the distributions with a given value of ¥ (p) of mass B,.

A more rigorous mathematical proof was given by Gross (1917) after the method of solv-
ing the isoperimetric problem of a sphere by Tonelli (1915) and by Rosenblatt (1920) using
Fubini’s theorem on the‘integral of the measure of a set of points.

BIBLIOGRAPHY

BrascHKE, W.: Kreis und Kugel, Veit (Leipzig), 1916.

BLASCHKE, W.: Math. Zeitschr., vol. 1, 1918, p. 52.

BLASCHKE, W.: Vorlesungen iiber Differentialgeometrie. vol. I. Julius Springer (Berlin), 1921.

BLASCHKE, W.: Math. Zeitschr., vol. 36, 1932, p. 166.

BONNESEN, T.: Probléme des Isopérimétres et des Isépiplantes. Gauthier-Villars (Paris), 1929.

BOULIGAND, G.: Fonctions Harmoniques, Principes de Picard et de Dirichlet, Gauthier-Villars (Paris), 1926.

BRILLOUIN, L.: C. R. Acad. Seci. Paris, vol. 181, 1925, p. 749.

CALLANDREAU, O.: Ann. Obs. Paris, vol. 19, 1889.

CARLEMAN, T.: Math. Zeitschr., vol. 3, 1919, p. 1.

COURANT, R.: Dirichlet’s Principle, Conformal Mapping and Minimal Surfaces. Interscience Publ., 1950.

CRUDELI, U.: Nuovo Cimento, ser. 5, vol. 17, 1909a, p. 168.

CRrUDELI, U.: Giornale di Mat., vol. 47, 1909b, p. 374.

CRUDELI, U.: Atti Acad. Lincei, ser. 5, vol. 19-2, pp. 41 e 666, 1910.

CRrUDELI, U.: Rendiconti Cir. Mat. Palermo, vol. 59, 1935, p. 336.

DARwIN, G. H.: Phil. Trans., vol. 206 A, 1906.

DARWIN, G. H.: Scientific Papers, Vol. TII. Cambridge Univ. Press, 1910, p. 523.

Divg, P.: C. R. Acad. Sci. Paris, vol. 183, 1926, p. 949.

DivE, P.: C. R. Acad. Sci. Paris, vol. 184, 1927, p. 371.

D1vE, P.: Rotations Internes des Astres Fluides. Blanchard (Paris), 1930.

GOURSAT, E.: Cours d’Analyse Infinitésimale. Third ed., vol. IlI, Gauthier-Vallars (Paris), 1923, p. 507.

GRoss, W.: Monatshefte Math. Phys., vol. 28, 1917, p. 77.

GUNTHER, N. M.: La Théorie du Potentiel et ses Applications aux Problémes Fondamentaux de la Physique Math-
ématique. Gauthier-Villars (Paris), 1934.

Hamy, M.: J. de Math. pures appl., ser. 4, vol. 6, 1887, p. 60.

Hamy, M.: Ann. Obs. Paris, Mém., vol. 19, 1889.

HOPFNER, F.: Physikalische Geodesie. Akademiche Buchhandlung (Leipzig), 1932.

KELLOGG, O. D.: Foundations of Potential Theory. Julius Springer (Berlin), 1929.

KNESER, A.: Die Integralgleichungen und ihre Anwendungen in der mathematischen Physik. Second ed., Vieweg
(Braunschweig), 1922.

KOEBE, P.: Sitzungsher. Berliner Math. Gesell., vol. 5, 1906, p. 39.

KorN, A.:Lehrbuch der Potentialtheorie, Vol. I and IL. Diimmlers (Berlin), 1899,

LiapouUNOV, A.: Ann. Fac. Sci. Univ. Toulouse, ser. 2, vol. 6, p. 5, 1904 (translated from the thesis 1884).

LiapouNov, A.: Mém. Acad. Sci. St. Pétersbourg, vol. 22, 1908, p. 1.

LIAPOUNOV, A.: Probléme Géneral de la Stabilité du Mouvement. Annals of Math. Studies, no. 17, Princeton Univ.
Press, 1949; or Ann. Fac. Sci. Univ. Toulouse, ser. 2, vol. 9, 1907, p. 203; translated from the essay 1892, Kharkov.

LICHTENSTEIN, L.: Sitzungsber. press. Akad. Wiss. (Berlin), 1918, p. 1120.

LICHTENSTEIN, L.: Math. Zeitschr., vol. 3, 1919, p. 8.

LICHTENSTEIN, L.: Math. Zeitschr., vol. 28, 1928, p. 635.

LICHTENSTEIN, L.: Grundlage der Hydromechanik. Julius Springer (Berlin), 1929.



34 THEORIES OF‘EQUILIBRIUM FIGURES OF A ROTATING HOMOGENEOUS FLUID MASS

MAZURKIEWICZ, W.: Math, Zeitschr., vol. 25, 1926, p. 749.

MERLIN, E.: C. R. Acad. Sci. Paris, vol. 185, 1927, p. 1579.

MERLIN, E.: C. R. Acad. Sci. Paris, vol. 190, 1930, p. 1118.

MEeRLIN, E.: C. R. Acad. Sci. Paris, vol. 200, 1935, p. 638.

MINEO, C.: Rendiconti Cir. Mat. Palermo, vol. 51,1927, p. 293.

MINEO, C.: Quart. J. Math., vol. 4, 1933, p. 184.

Minkowskl, H.: Geometrie der Zahlen. Chelsea, 1953.

NEUMANN, E. R.: Studien iiber die Methoden von C. Neumann und G. Robin zur Lsung der beiden Randwertaufgaben
der Potentialtheorie. Jablonowski-Preisschrift, no. 37, Teubner (Leipzig), 1905.

NEuUMANN, E. R.: Beitridge zur einzelnen Fragen der hoheren Potentialtheorie. Jablonowski-Preisschrift, no. 41,
Teubner (Leipzig), 1912. :

-NixLiBoRc, W.: Math. Zeitschr., vol. 30, 1929, p. 787.

NikLBORC, W.: Math. Zeitschr., vol. 34, 1931, p. 74.

NIKLIBORC, W.: Math. Zeitschr., vol. 36, 1932, p. 161.

NIKLIBORC, W.: Math. Zeitschr., vol. 36, 1933, p. 655.

PizzETTI, P.: Principii della teoria meccanica della figura dei pianeti. Spoerri (Pisa), 1913.

PLEMEL]J, J.: Monatshefte Math. Phys., vol. 15, 1904, p. 337.

PLEMELJ, J.: Monatshefte Math, Phys., vol. 18, 1907, p. 180.

PLEMELJ, J.: Potentialtheoretische Untersuchungen. Jablonowski-Preisschrift, no. 40, Teubner (Leipzig), 1911.

POINCARE, H.: Bull. Astr., vol 2, 1885, p. 109. )

PoiNcaRE, H.: C. R. Acad. Sci. Paris, vol. 104, 1887, p. 622.

PoINcARE, H.: C. R. Acad. Sci. Paris, vol. 106, 1888, p. 1571.

POINCARE, H.: Bull. Astr., vol. 6, 1889, pp. 5 and 49. i

Poincarg, H.: Théorie du Potentiel Newtonien. Gauthier-Villars (Paris), 1899.

PoINCARE, H.: Lecons sur les Figures d’Equilibre d’une Masse Fluide en Rotation. Gauthier-Villars (Paris), 1902.

Rapau, R.: Bull. Astr., vol. 2, 1885, p. 157.

ROSENBLATT, A.: Bull. Sci. Math., ser. 2, vol. 44, 1920, p. 156.

ScHMIDT, E.: H. A. Schwarz-Festschrift. Teubner (Berlin), 1914, p. 368.

STERNBERG, W.: Potentialtheorie, vols. 1 and 2. Gruyter (Berlin), 1925-6.

. T1SSERAND, F.: Traité de Mécanique Céleste, vol. I1. Gauthier-Villars (Paris), 1891.

TonNELLI, L.: Rendiconti Cir. Mat. Palermo, vol. 39, 1915, p. 109. -

TonNELLI, L.: Calcolo di Variazioni, vol. II. Zanichelli (Bologna), 1923.

VERONNET, A.: J. de Math. pures appl., ser. 6, vol. 3, 1912, p. 331.

VON ZEIPEL, H.: Bihang til Svenska Vet. Acad., 1898.

WANGERIN, A.: Theorie des Potentials and der Kugelfunktionen, vols. I and II. Gruyter (Berlin), 1922.

WAVRE, R.: C. R. Acad. Sci. Paris, vol. 184, 1927, pp. 277 and 373.

WAVRE, R.: C. R. Acad. Sci. Paris, vol. 185, 1927, p. 1113.

WAVRE, R.: C. R. Acad. Sci. Paris, vol. 186, 1928, p. 734.

WAVRE, R.: Bull. Soc. Math. France, vol. 57, 1929, p. 222.

WAVRE, R.: Figures Planétaires et Géodésie. Gauthier-Villars (Paris), 1932.

WEYL, H.: Die Idee der Riemannschen Fliche. Teubner (Berlin), 1923.



CHAPTER I

Ellipsoidal Figures of Equilibrium

POTENTIAL OF AN ELLIPSOID
A point on the surface of an ellipsoid is represented by

2 2 2
Stth—1=0. (23)

For a point P outside the space bounded by this ellipsoid we have

x% ¥ z?
;§+7)§+_c—2_1 >0.

Consider

x2 2 22 “_
a2+u+ b2+u+c2+u 1=0

The left-hand side is positive for £ =0, decreases continuously as u increases, and becomes
—1 for u=0, Hence it has one and only one positive root. Denote the root by u; the outside
potential of the ellipsoid at a point u(x, y, z) determined by the root u with given x, v, z, is

_ ol OO . L ) d\
Ve=1mabcp fu (1 PN S TR SRRy By il (24)
where
e(A)=(a®+ 7)) (B2+\) (c2+)0).
The inside potential is
® 2 2 2 dA
Vi=mab f (1—' £y 2 ) .
mavep |, a+N B2+ 4n/) Von (25),

The root u is zero on the surface, and the two functions ¥, and ¥; coincide on the surface.
V. and V; have both properties of potentials because V. becomes zero of order 1/R at infinity,

35
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and its first derivative is continuous and satisfies AV =—4p for the whole space, where p is
supposed to be zero outside the ellipsoid.
Let

_[= d\ (> d\
k= f v (A A"f (a2+x)v<p(x)’ B—o (62+1) Vo(\) ’

€= j cZ-H\)V ()\)
Then
=mabcp(K—Ax?—By?—Cz2); (25a)

potential V; is a maximum at the center, and its value is rabcpK. The equipotential surface
is K—Ax2—By*—Cz*=h, or Ax*+By?+Cz2=K—h and is homothetic and concentric
as h varies. It can be shown that the potential is a maximum at the end of the minor axis and -
a minimum at the end of the major axis.

The energy of the total mass is

=%pf Vd‘r=% mpZabe (de'r—Afxsz—nyzdr—sz2d7)

8 2,252 sz dA 26
=157 2p2a%b*c Vo' (26)
In the case of an oblate (planetary) spheriod, we obtain
2 /
a=b=—~————(€ T c,
'S
= =L 2 -1 y__ 72
A=B Zhe [(2+ 1)L cot™? {— 2],
. @)
= 2 — -1
C abc2(€ + 1) (1~ cot~t {),
—E 202 5(€2+1)1/3 -1 = 1/3
W= 15 TP R 2 {cot1y, R=(abc)13,
If we denote the eccentricity of the meridian section by e, then
c? 1
2 =7 —Z-
CElm G T T
VT — a2 e
abcA=abcB= 13 € sin‘le—1 2e ,
e e
- (27a)
abcC—— (1-—‘\/ — gz Sin” e)
=i_56. 72p2R5 (1—e2) /6 sin"!e

(Somigliana, Morea, Heine, Tedone).
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Theorem: A polynomial of the second degree
O=—ax?2—By?—yz2+3,

which is positive in a region T, represents a Newtonian potential for the inside of one and
only one homogeneous ellipsoid in that region (Dive, 1931a, 1931b).
Ivory’s lemma: Take two homofocal ellipsoids E and E;:
x2  y? 22 ) x? y? z®
——dl v _..+__+——_.—_ R
(1,2—1_1)2_‘_c2 L a? b? c}
with

ai—a?=b2—b>=c}—c
Consider a point A(x, y, z) of E and a point 4:(x, y, z) of E;, such that

_a _bh &
= Nn=pY =72,

<

and another pair of such points B(x', ', z') and By(x{, ¥{, zi); then we have AB;=AB. Such
a pair of points is said to be corresponding.

Ivory’s theorem: Let P and P; be two corresponding points on two homogeneous confoéal
ellipsoids E(abc) and E;(aibici). The x-component of the attraction due to E at P and the
x-component of the attraction due to E; at P, are in the ratio (bc)/(bicy).

Chasle’s corollary: Take two confocal homogeneous ellipsoids of equal mass. The
potential at a point of the first ellipsoid due to the second ellipsoid is equal to the potential
at the corresponding point of the second ellipsoid due to the first ellipsoid.

- Maclaurin’s corollary: The atiraction at an external point of a homogeneous ellipsoid
is in the same direction as the attraction due to the homofocal ellipsoid passing through that
point, and their strengths are in the ratio of the masses of the two ellipsoids.

Newton’s corollary: The homogeneous shell contained between two homothetic con-
centric ellipsoids does not affect any attractive force at an inside point in the cavity, or,
in other words, the volume potential of a homogeneous ellipsoidal shell is constant inside
the cavity. ‘

The converse is -also true. In order that the potential in the cavity be constant, the two
homothetic surfaces should be ellipsoids (Dive, 1931b, 1932a, 1932b). :

Duhamel’s corollary: A spherical shell contained between two concentric homogeneous
spheres does not affect any attractive force at any point inside the cavity. This is the basis
of the famous experiment of Cavendish on electricity. Cavendish took an electrometer into
a highly charged, spherical cavity but could find no change of electric force inside.

Conversely, Robin’s problem is to find the distribution of electricity on the given surface S
for which the interior potential is constant (Gunther, 1934). ’

Poisson’s theorem: The attraction at an external point due to a homogeneous homothetic
ellipsoidal shell is directed toward the internal axis of the cone with the point as the vertex:
and in contact externally with the homogeneous ellipsoid (Gray, 1913). \

The proof of these classical theorems are in the books by Tisserand (1891), Thomson and
Tait (1883), Pizzetti (1913), or Poincaré (1899).
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Stokes’ theorem: Given the surface S of a mass in equilibrium and its mass M and its
angular velocity w, we can determine the exiernal potential ¥. In fact

- 5
AV,.=0, Vi+% (x2+ y?) = constant

on the given surface S, and lim r¥ =M. The function U=V + (w?/2) (x%+y?) is determined
"by Dirichlet’s problem. = ‘
Corollary: We can also determine the principal moments of inertia together with the
directions. From this theorem, it follows that the mass distribution inside the earth cannot be
determined by the gravity measurement on the earth’s surface alone or by the perturbation
on other planets alone. Even when the rotation velocity @ depends only on the distance from
the rotation axis, we can determine the external potential ¥ merely from S, M, and o (Dive,
1928; Wavre, 1927, 1932b).
Clairaut’s theorem: The difference between the relative decrement of gravity from pole
to equator and the ellipticity is 5/2 times the ratio of the centrifugal force and gravity at -
the equator; that is,

gl)_ge_df‘b=§ w?a .
8&e e 2g

MACLAURIN SPHEROID (MACLAURIN, 1742; LAPLACE, 1776; LEGENDRE, 1789)

Put a=b, a> b > c;then

V.= matc f” <1_x2_+y2___ 22 ) d\
’ Pl a?+x 2N/ (@A) Ve tr
Put
___ _r__ _V__p.
X—-ax Px, Y_ay_ Py, Z= Py Rz;
then

P=27q? =2mra? :
e C”fo @tnVearn RTEme c"fo (c2+1)*2(a2+N)’

dV=de+Ydy+Zdz=—g [P(x2.+y2) +Rz?], 28)
and the condition of relative equilibrium is
2 -
%= V+ % (x2+y?) + constant =—% [(P—w?) (x2+y*)+ Rz%] + constant.

The surface of equal pressure is given by
(P — w?) (x2+y?) 4+ Rz%= constant, 29)

which is a rotation figure around Oz. We determine € so that the free surface coincides with
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x2+y? 22
a? 2
and we have a?(P—w?) =c*R=C. (30)

This gives the relation beyween C and w.
At first we see that ¢ < a. In fact, a?P — c2R= a?w?, or, substituting the foregoing ex-
_pressions, we see that the left-hand member becomes

N AdA
(e C)fo CESNICES VR0 R

Next we write a%e?= a2 — 2, or ae/c=f. We obtain from equation 30
A+MP—R=a?(1+£),
where P and R depend on the ratio of the two axes. Put A= c?, then

_ @ dt
P—2WP(I+F)L QA+£+0)Vite’

or, after computation,

P=2mp 14/ (tan‘1 f— *‘f—>

I I+7
(G1)
R=2mp 1—;ﬁ (2f—2 tan-! f);
hence
W _ B+ a3
2mp IS o
Furthermore
4 4 4 a3
3 ma‘cp=3 mpc (1+£?) 37rp\/i-ﬁ. (32)
the function h has a maximum at f=£,=2.53 . . . ; and
dh_9+f
df_ f4 "I(f)a
712+9
W=l

T Erm! s

BB
VO e

If w?(2mp)< 0.224, we obtain two Maclaurin spheroids; if % (2mp)=0.224, we obtain only
‘one Maclaurin spheroid, and if ?/(27p) > 0.224, there is no Maclaurin spheroid. There is no
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natural celestial body for f> 2. 53. When w—> 0 or h—> 0, then one of the roots tends to zero,
that is, the figure tends to a sphere. If f is large, then e is small and a is large, and the figure
tends to a flat circular disc of large radius:

|

M 1 3M

32" 1 3= P
darp 14 f2° “ 4 7P A

b

JACOBI ELLIPSOID (JACOBI, 1834; LIOUVILLE, 1834; SMITH, 1838; PLANA, 1853; DARWIN, 1887)

Let '
_V__ __ ___
X——g—— Px, Y= oy Qy, Z 9z Rz,
where
d\
W) ; 33
P= 27Tab0pf @10 Vol etc.; (33)
then the condition for equilibrium is
%=—% [(P—w?)x2+ (Q — @?)y2+ Rz?] + constant. (34)
The surface
(P—w?)x?+ (Q— w?)y%+ Rz%= constant (35)

is homothetic and concentric of the second degree. In order that this surface should coincide
with the free surface of the ellipsoid x%/a®-+y2/b%+2%/c2=1, we should have

a2(P~w?) =b*(Q—w?) =c?R=C, (36)
whence we obtain the conditions

,_a’P—b2Q

O T T pe (87
and a2b?(P—Q) +c2(a2—b*)R=0. (39)
From equation 37 we obtain
A\
21rp (a2+h) (B2+N) Veh) '
Put 5 .
A=c3k L £~y
° a2 b bz kg
then the conditions are
w? ® kdk
%=St . m, A=V (1+sk)(1+tk) (14k), (39)
and
KdK = k2dk
(1—s—1) f Tl 40)

Also we obtain
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4

M=é7rabc T J
3TN TI TP T

It should be noticed that s+t <1, and hence s <1, t <1, and accordingly ¢ < a?, ¢ < b2,

and c is the shortest axis.

Now we determine s and ¢ with a given value of w, or conversely determine w with

given values of s and ¢ (Tisserand, 1891).
Let h= w?/27rp as beforg; then

h— _ °° Kdk
=¢(s, 1) =st o (1+sk)(14+ix)A’

Kdk ® w2dk

0=4y(s, t) = (1—s—t) f: ~A—3——st , AT

It can be shown (Appell, 1921b) that

@) s,t>0; »
(2) y(s, t) is symmetric with respect to s.and ¢;
3) s=0att=1;

(4) t decreases with increasing s;

(5) for a given value of 0 <s < 1, there is only one
value of 0 <t < 1; .

6)C is at s=t=1,=0.3396, and the value of A
at E is ho=0.1871.

The condition for the existence of a Jacobi ellipsoid
is w*(2mp) < 0.1871. We obtain two Jacobi ellipsoids
for h<hp=0.187, but the two are identical. For
h=0.187 we obtain only one ellipsoid with a=b. The
Jacobi ellipsoid turns into a Maclaurin spheroid at E.
This is the bifurcation point of the two series of
equilibrium figures. There is no Jacobi ellipsoid for
h>0.187. For w— 0, the major axis increases in-
definitely, and the middle and the minor axes tend to
zero but their ratio to 1; that is, the figure is infinitely
long and needle-like with a circular section. Thus we
obtain three figures—a sphere, an infinitely thin cir-
cular disc, and an infinitely long needle. The theory of
linear series has been discussed by Poincaré (1885a,
1885b) with the idea of the exchange of stability at the
bifurcation point. A Maclaurin spheroid is stable in

0135 ]

0.339 I
(D [
|
1

! 1
00135 0339

the linear series S to E but is no longer stable in the linear series E to 0. On the other hand a
Jacobi ellipsoid in the linear series E to 4 and E to B is stable. The stability character is

exchanged at point E.

COSMOGONICAL PROBLEM

From a cosmogonical point of view, we should take w=Jw as the parameter. A nebula
with a vanishingly small @ may develop @ by shrinking (L.aplace, Liouville). For a Maclaurin

spheroid,

375-031 O - 71 -4
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2 w? ,11;2 25,u,2 1
== 2 S o
J=5Maz, | b=~ 2ol AM2a* 2mp’

502 (ﬂ)1/3;4(1+f2)2/3 [(3+f2) t;;l'lf"3f].

3MEN\3M

Put k= (f) = 4h(1+f2)23, which is supposedly given. For a Jacobi ellipsoid,

M ey ;@(1 1) ,
J=% (@+b) =—0(-+7), f
2=l_"_2_=25ﬂ«2( st )2 E
b JZ M2ct\s+1¢/ :
t
w? _ 50u m)ﬂs (st)#3 _ B |
2’"'P_3M3(3M (s+t)2“‘P(5’ t)=h, :,
+1)2 ]
k=(:st)4/)3 ¢(s, t), 1
d’(sa t)=0;

k is a function of p and w. If p=constant, then k shows the variation of u; if u=constant,
k shows the variation of p. The conclusion is that there exist one or two ellipsoidal figures
of equilibrium for any given value of u. Véronnet (1919a, 1919b) varied a instead of p in his
work.

For a Maclaurin spheroid, we have

/ ‘/ N ’ e
(fro) " AL, B0 T g T [ GRS L o]

For a Jacobi ellipsoid

_ 50 w5t (st h_
E73M3a 16 st Ve

He obtained the'ﬁgures

N = - = —

8=1.28, te=50=0.340;
&= 1.18, 51=0.24, :=0.45. k

For cosmogonical applications see Appell (1922); Véron-
net (1926a, 1926b, 1933); Jeffreys (1952); Poincaré (1913);
Chamberlain and Moulton (1909); Narliker (1934); Nolke
(1930, 1932); Filon (1932). These discussions are on statical
grounds, and should be dynamical (Jeans, 1917, 1919).

In the last few years several books on heterogeneous
equilibrium figures have appeared, intended for appli-

e e —— L
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cation to planetary and double-star problems, e.g., Wavre (1932a), Kopal (1960), Jardetzky
(1958), and Meffroy (1962). The most interesting feature is the difference of the surface of
equal pressure—isobaric surface—and the surface of equal density—isoteric surface—,
the idea initiated by Bjerknes in meterology and worked out by Wavre (1932a) in stellar’
applications. Recently Chandrasekhar (1962) based his discussion on his theory of super-
potentials and on the virial theorem. '

HOMOGRAPHIC MOTION

Consider a nonrigid body motion of a homogeneous, ﬂuld mass and keep its ellipsoidal
figure of equilibrium unchanged; that is, allow internal motion of fluid mass by fixing the '
external shape of the figure. Such a motion is called homographic. In other words, the ex-
ternal shape is an ellipsoid rotating around its own axis, but the motion of the fluid is rotational
with a different angular velocity to that of the external shape. At first, solidify the fluid in the
form of an ellipsoid and fit the fluid inside a vessel of the same form and size, and let it rotate.
Then melt the fluid and let the vessel have an additional angular velocity. Finally, remove the
vessel (Pizzetti, 1913; Basset, 1888; Greenhill; 1882; Lamb, 1959).

A molecule of the fluid which was at a point (£, 5, ) at t=0 referred to the fixed axes in
space is supposed at t=1, to be at

x=~F&+mn+ng, ¢ mn
y=£'¢+m'n+n't, _ D= ¢'m'n' =1,
z=/l!§+m”n+n"£, fllm" 14

where the direction cosines ¢, m,n, ¢ 'm'n’',£"m"n" are functlons of t.
The Lagrangian equations of motion are

elem) o () re (e @) =553
(

d*/ d d? av 14
£(migie) +n (n )+ () =55 o

BN, dm), [ dn) oV Lop
f(“ dﬁ)“'(” dﬁ)“(" dﬂ)‘ac_z a0’

2 2 ! "
(/d/)zfi_(:_’_/d/ d2¢

di?. de? dt? e de?

where

s ete.

Differentiating these equations with respect to £, 7, { gives

(/d_zl)_f_rf_zaz
di? e poagr’ etc.,

(m dz”):(n d2m>* 2V 1 dp
dr diz )~ amar  pamar ¢
We obtain three integrals from the latter equations:

_t{_{z___ d_rp_ ,dn’ , dm’ ,,dn” . dm
m I n dr +m 7 dr ——+m di —n" —d—— constant.

and
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Assuming that the axis of the principal moment of inertia coincides with the coordinate axis
at t=0, we obtain three integrals of area

dy _dx\ o (,d_ . df dm'_ dm
f( dt ydt)pdT_X([ dt ¢ dt>+Y(m de " dt>

dn
+Z (n —=-—pn' ——}=constant, etc.,

and one integral of energy:

() T [() 2 (1) rrmemsms

Let the equilibrium figure be

g ont 2
Zg-f"b?_*_c_%:l

and

=M+ Ny+ N7z,
n=px+p'y+pu'z,
{=vx+v'y+v'z

The free surface at ¢ is also an ellipsoid

M+ Ny+N2)?2 | (ux+p'y+u"2)2 | (vx+v'y+v"z)2
a + B * PP

and the potential is
V=K—LE2—Mn2—N{2—2L'n{—2M'é{—2N "¢,

where the coefficients are functions of £ Substituting this in the Lagrangian equations,
we see that dp/d€, dp/dm, dp/d¢ are linear homogeneous functions of &, m, {, and p is of a.
similar form to V" as a function of £, 7, {, and t. But p should be a constant on the ellipsoidal
surface; hence

p pO'(l @ B a + o,

where o, @ are functions of ¢ only. Inserting this in the equations for

dz’ d®n
(/7{2-)’ (mgt-;>, etc.,

and after some computation, we obtain nine equations of the form
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a2t 14 d2m (BV) N
ra ag(ax>+2 o A om\ox +2"b
dax’' 14
7T ag( )+20' e e ey e e
din’_ 3 (V) o v
- e e 7D _8§(62)+2Gc§'

With AV=—4xp, we obtain & from

2[00 00 4 )]y (06)_ (Bim)_(305m)

a? bg c} at at ot ot ot at

Thls equation expresses the surface pressure as a function of the position at . For a uniform
rotation, this equation reduces to

LSS SIS N DA
20(a§+b§+c§) darp — 202,

and

&S

1 1 1
2T (74—?-}"—)
ag 0

o=

where g is the mean surface gravity.

RIEMANN‘S PROBLEM (1861)

Suppose that the external axes of the ellipsoid are invariable, but the direction of the
axes is variable. Denote the coordinates that coincide with the axes a, b, ¢ of the ellipsoid by
x', y', z'. Then with reference to the coordinate axes fixed in space,

x=a1x + oy +azz’,

y=B1x" + By’ + Baz’, } ..

z=y1x' + vy + vsz’
On the other hand,

x'=L&+ Mn+ NE,

y'=L"¢+Mn+N'¢,

2’ =L"¢+M"'n+N"{

Thus the general motion of molecules is decomposed into rigid and homographic motion.
The latter is an internal motion. The external shape is represented by

x'2 y’Z Z’2_1

a?  b*  ¢?
From
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we derive

The left-hand side is the projection of the acceleration of a molecule on the x'-axis. This is

composed of three components: o
(1) The component of the relative acceleration d2x’'/di?, or

dz L dZM gdzN
£ dt2 M ds de?”’

(2) The component of the acceleration due to deformation

d? d? d?
x'A11+y'A12+z'A13, where A =0y dC:s+Br dgs d;y;;

and

. (3) The composite centrifugal acceleration

where P, Q, R are the angular velocities of (x', ', z’') along the axes x', ', z’ referred to the
fixed axes; that is.

daz
7

d,Bz

P=a +B3 +’}’3 dt ete.

Since the axes of the ellipsoid are supposed to remain invariable, being of the form
V=K—Ax'?— By'2—Cz'2

with constant K, 4, B, C, we see that

can be written

%/=——2Ax ——24(Lé+Mn+ND);

1op_ £ mon _C_C‘*_C_):_ (af §_+7€)_
7)&:_'———20-( 2 "+b2 <'~bc’+c2 dx’' 20 ab

Put

"

"d ' ¥ da = 'ig
p=> 'd%'a ll‘:Za_dt—’ x=« dt
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Suppose that the external surface rotates with angular velocity @ around its figure-axis.
Let it be the c-axis; then P=Q=0, R#0, An=A»=—«? Ain=—dR/dt, As1=dR/dr,
and other 4,5 are zero. We obtain
\

d dR d
a (w—l——ﬁ)—-b E—=O, a (x«p—jlf>—2bR<p=O,

B0 () ramy
b(d«p dt>+a 7t 0, & Xlll+dt 2aRy=0,

c (‘PX""‘%I):O, c (le—%‘f‘>=0.

These equations are satisfied in three cases:

{§D=O7 {§0=0, [l’j=0,
I{y=0; I __a TI{ b
x—Rb, x—aR.

Suppose at first that @ # b. We obtain at first dx/dt=0, dR/dt=0 for any of the three cases;
and ¢

x'=¢ cos xt+(—;n sin x¢, x=x"cos Rt—y' sin Rt,
I3 b - ' . '

y =—-L—Z§ sin xt-+m cos xt, y=x' sin Rt+y' cos Rt,

=y z=2z'.

The axes (x’ ' z') rotate uniformly around the z-axis.

‘ Let
c? c?
| | & ph
then the condition becomes
X2+ R?_ 2Rx
Smp =P8 G = Vst ds, o),

where

s, t)z_Lw [ (1+s:§)1(1+tk)_lik]%’

xdk
o (14sk) (1+tK)A_’

ols, t)=st

A=V(1+sk)(1+tk)(1+«);

Equation =0 gives Jacobi’s rigid motion; equation R =20 gives Dirichlet’s internal harmonic
motion (1860), and the external shape is fixed (Dedekind’s ellipsoid, 1860).
The condition for R # 0, x # 0 can be transformed into
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(x*+ w?)? ——4w2x2=£—; (P?s—Q%),

where

K(1+tK)dK> 0,

P=2mp(1—s) f
and

Q=2mp(1—t) f ﬁ(1—-“3‘ﬁd >0.
The condition is satisfied if

PVs>QVt, or Vs —s3/2 > Vi— 32,

that is, s, ¢t should be contained in the interval between 1/3 and &

Next suppose that a=b. We have Q=R=0,P #0,a=5 # ¢, and y=x=0, P=const.,
and ¢ = const. A uniform rigid rotation occurs around the a-axis, and a homographic deforma-
tion occurs on the plane perpendicular to this axis. Contrary to the case a # b, the rigid-body
rotation and the harmonic motion have a common axis which is one of the equatorial diameter.

Stekloff (1905, 1906, 1908, 1909) classified two cases a >c, a=b and a<c, a=b. The
first one is Dirichlet’s case. In the second case, there are three solutions; one is Dirichlet’s -
and the other two are new. Denote by €' the positive root of

e+1 15€2 — 3e —4

log =2 5a 32 —0c+1

There is only one positive root in the interval (1, 5/3). If %/ > ¥ (¢’), where

V(&) =e(e+1)(e—1) (36 e+l )

10g—-—3

then the solution is possible for w?/m > W(e').If w?/mr < ¥(€'), then there is one solution for
0 < w?/ < 4/15 and two solutions for 4/15 < w?/7 < ¥(€'). Thus it is possible to have three
solutions.

OSCILLATION OF AN ELLIPSOID

The stability character may be discussed by imposing small oscillations on the equilib-
rium figure, and studying the subsequent motion. It is the method of judging the stability
by the characteristic exponents of Poincaré. An equilibrium figure is stable if the varied mo-
tion is a periodic oscillation around the equilibrium figure.

Appell (1920, 1921a) and Cartan (1922) considered small oscillations about the equilibrium
state of a rotating fluid mass in general:

— 2w =.QSI£ )
ax
{
v = ‘_9_‘_!’ —py_p 1 .
at-i-2wu ay"’ =V p+2w (x2+97),
w ol du 3w dw_
ot 9z’ ax+ay+az_0’
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We obtain from these equations a partial differential equation

92 e
e \J 2. 2
Y Vg + 4o 3 .

72

Putfing 8x = eM¢, etc., Y= My, u= ddx/dt, etc., we obtain

S P ()
6x2+6y2+1 A2 ) 9z? 0.

Poincaré (1896, 1903, 1910a, 1910b) discussed the tidal motion over the oceans on the
basis of the theory of integral equations (see Appendix A; see also Bertrand, 1923). Bryan
(1890) and especially Hough (1897) considered the tidal theory on the basis of harmonic analy-
sis. Proudman (1913, 1914, 1916, 1924, 1928, 1932, 1933) discussed the tidal theory on the
basis of the theory of quadratic forms of an infinite number of variables by going back from
Fredholm’s theory of integral equations as in Poincaré’s discussion to Hilbert’s theory of
integral equations. Goldsbrough (1928, 1929, 1930, 1931, 1933) discussed the tidal oscillations
as the periodic solutions of differential equations.

A complete discussion of ellipsoid-type oscillations of a Maclaurin spheroid has been
published by Hargreaves (1914). Such - oscillations (Riemann, 1860) were shown to have a
period just one-half the rotation period at the bifurcation point of the Jacobi ellipsoid series
and the Maclaurin spheroid series. The oscillations of a spheroid are divided into polar and
equatorial. In a polar oscillation, the equator is always circular, but the equatorial radius
and polar radius are subject to periodic change. In an equatorial oscillation, the polar axis
is invariable, but the equator is subject to periodic elliptic deformation. The mode of oscilla-
tions in the beginning of the Jacobi linear series is not much different from that of a spheroid
near the bifurcation point. As we proceed farther from the spheroid, the distinction between
polar and equatorial becomes unsuitable. If the word polar is applied to the long axis, and
the word equator to the nearly circular ellipse containing the short axis, then the oscillation
may be classified as polar and equatorial. In the beginning of the Jacobi linear series, the
equatorial oscillation has just one-half the period of rotation, and the polar oscillation has a
shorter period. As the ellipsoid becomes slightly elongated, the two periods gradually diverge;
the first period increases, and the second decreases. In the limit of extreme elongation, the
first period becomes equal to the rotation period, and the second tends to a value as the
rotation period tends to infinity. The two frequencies n. and n; are finite for small oblateness,
and ne, which is the greater at first, decreases rapidly with increasing oblateness and n.=n,
for ¢/a=0.5892 when n2/w?=4.166 . . . . The bifurcation occurs at ¢/a=0.5827, n.=2w,
nZlw?=4.1182; n,=2w is reached for c¢/a=0.5612.

The amplitude ratios da:db:dc of the oscillation of frequency n are determined by
(Riemann, 1861)

[a®Eqa—n?(a®+c?)] _déf_*_ (abE 4 — n%c?) %= 0,

[62Ep — n2(b2+c2) ] %Q-i- (abE gy — n%c?) fiag= 0; abc= constant.
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The frequency n? is given by the quadratic equation for n2 by eliminating the ratio da/db from
these equations; the total energy is expressed by mE/5, and Eqq, etc., are the second denva-
tives of £ with regard to a and b, respectively.
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CHAPTER il

Lamé Functions

LINEAR DIFFERENTIAL EQUATIONS
Consider the differential equation

d*u du _

a2 TP ta2)u=0,

where p(z), ¢(z) are analytic but with a finite number of poles. A point at which p(z), q(z) are
both analytic is called ordinary; otherwise it is singular. If, although p(z) or g(2) or both
may have poles at z=c¢, (z—c)p(z) and (z—c)2q(z) are analytic at z=c, then such a point

z=c is called regular; otherwise the point is called irregular. This condition is not only-

necessary but suflicient (Ince, 1927).
Write

(z-c)2'[-1-2z—z+ (z=c)P(z—c) %4— Q(z—c)u=0,

and

P(z—c)=po+pi(z—c)+p2(z—c)2+ .. .,
Qz—c)=qo+ qi(z—c)+qgs(z—c)2+ . . .,
and try the solution
u=(z—c)a[1+§an(z—c)n].
We obtain

&+ (po—1)a+go=0,

'al[(a+1)2+(po—l)(a-l-l)+q0]+ap1+q1=0, ...
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efficients ay, az, . . . are determined successively after we determine the roots &= p1, p2 by
this equation. '

wi(z) = (z—c)P1 [l-l— i an(z—c)”}, we(z) = (2= c)P2 [l+ 2:: ax"(z--c)"].‘

n=1

If the roots are p and p+n(n=0,1, 2 . . .), then this formula for w;(z), wa(z) fails, .
and we(z) is written :

Aw{z) +B [wl(z) log (z—c¢) + (z—c)P;'i hn(z—-c)"]

with arbitrary constants 4, B. The coeflicients hy are determmed by a process similar to
the above. The behavior at infinity can be examined by putting z=1/z. The point z= is
‘regular or irregular accordingly as z;=0 is regular or irregular. If zp(z), 22q(z) are analytic,
then z= is regular.

A linear differential equation with only regular singularities in the whole domain includ-
ing z= is said to be Fuchsian. When two singularities coincide, we call it a confluence.
Suppose that a1, az, as, ‘a4, © are the only regular singular points and other points are ordinary.
Let the exponents be a,, B8-(r=1, 2, 3, and 4), and the exponents at © be w;, z. The equation
is of the form

4 4 2
d2u+ ( 1— ,3,-) du 2 arBr Az +2Bz+C u=0,
(z—

dz? 2 z—ar ar) 14_1 (z—ay)

r=1

where 4 is such that u, pe are the roots of
4 4
W+ [z (ar+Br) ——3]+ S aBr+4=0,
r=1 r=1

and B, C are constants. Klein (1894) and Bocher (1894) have shown that linear differential
equations in mathematical physics can be expressed in a form such that the difference of
the two expoments is equal to 1/2 (elementary singularity). If two regular singularities coalesce,
we have a regular singularity with arbitrary exponents. If three or more than three regular
singularities coalesce, we have an irregular singularity. A linear differential equation with
rational coeflicients has a definite number of regular singularities and a definite number of
irregular singularities. Thus with 8,=a,+1/2 (r=1, 2, 3, 4) we have

Losal gy [ o (o))

2 4 g eon 4 T2 A2+ 2Bz+C

gzg_*_ 22z a Z (z—ar)? + 2‘; - u=0.
r=1 r T H (z—ar) .

=1

For 2= to be an elementary smgulanty, we should have

1 4 2 4 o2 3 4
it an(Fo)- S et S e
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Thus two constants B and C are arbitrary. By a further transformation
4
u=v [] (z—ar)r,
r=1

we can reduce the equation to

d (& 12 \dv, C+2Bitdz _
dzz+(zz——ar) + =0,

4
= dz

H (z—ar)
r=1
with 4= 3/16. This is the generalized Lame equation. The most general type is

r(r—4)
PP P — (z—ar)[ T

dzz 2

d*v 1(’ 1 )dv 1

2 Z—ar

r=1

=24 Ccp_gz™ 34 . .. +co]v=0.

This is called the Lame-Klein equation, which is the basis of the theory of cyclids (Bocher,
1894). Thus a linear differential equation is specified by the singular points and their ex-
ponents. According to Riemann, the generalized Lamé equation is written

| ay as as a4 ®©
P{O O 0 0 =z},
172 1/2 12 1)2
and specified by three elementary singularities and one nonelementary singularity without
any essential singularity.

Put ¢4— 0, lim C/ar=fL_/4, lim 2B/as=n(n+1)/4 in the geheralized I.amé equation;
this gives the Lamé equation

=0.

& & Ga—a) —an) —as) ¥

d2w+( 1/2 + 1/2 4 1/2 )dw h+n(n+1)z

Z—ay zZ—az Z—as

The irreducible constants are (az+as)/(az—ai), k, and n. Put az—= a3 1, a; —0; then
we have the associated Legendre equation

2 2
d w—2xﬁiﬂ+[n(n+1)— n ]w=0.

— a2
(1=«?) dx? dx 1 —x2

Put a;— 0, a2— 1, a3— as—> » and let lim [C/(asas)]=a/d, lim [2B/(asas)]=k%/4; then
we get the Mathieu equation -

d*w  (1/2 | 1/2 )_(_i_q;___ at+k?z
dz2+( z +z—1 dz 4z(z—1) w=0,
or
2
Z’;}+ (a+ k2 cos? x)w=0, z=cos? x.
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Put a;— a;— 0, az3— a4— =, and let lim C/(asas) = n?/4, lim 2B/ (azas) = k*/4; then we get
the Bessel equation '

d*w  1dw  z—n?

dz2 'z dz ' 4z? w=0,
or
d2w | 1dw n?
. —_— — =0, = 2.
dx2+x dw“}_(1 x2>w 2=

ELLIPTIC COORDINATES

Consider

X2 2 22
Az—a2+)x2—b2+)\2—c2_

1=0, (1)

c<b<a, A—a? <AZ—D%2 < AZ—(2

The surfaces obtained by varying \ are confocal. We obtain three surfaces corresponding
to the three roots A2 :c<v<b<pu<a<p. For p>a, it is an ellipsoid; for b< u<a, a
hyperboloid of one sheet; for ¢ < v < b, a hyperboloid of two sheets; p, u, v are called the
elliptic coordinates of a point in space. For a given set p, u, v, there are eight points located
symmetrically with regard to the three coordinate planes; for a given set of x, ¥, z, there is
only one set p, u, v. We have identically

Ly 2 (PN (=) (o h)

A2—q?  ANE—pH2  AE—c2 (N2 —a?) (A2—b2) (\2—c2) (42)
Multiply both sides by A2~ a? and put A2=ga?2; then we have
o= P20 (2 —a?) (2 —a?)
(@b (ar—ct)
similarly
y2= (Pz_bz) (I"'z_b2) (VZ_.bZ) , (43)
(b= (0~ )
g (P (@) B=c) |
(" —a?) ("= 6%)
The elliptic coordinates p, u, v are orthogonal:
ds?=dx?+ dy?+ dz2 = o2dp? + B2du? + y:dv?, )

_ Q __ 9 -
R R o
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Q*= (u?—p*) (p*—v?) (¥2—pu?),
q2= (p2=a?) (p*—b?) (p?—c?)
p? (45)
Br— (m2—a?) (u2—b%) (u*—c?)
W ’
e (»*—a?) (,,-2;,,2) (=c)

Here 42>0, B2>0, C2<0. Hence A4, C are real, and B pure imaginary. Thus the
Laplace equation takes the form

il a %
or
34 (pﬂ—rﬂ)%(A %)=o. 46)
Put
%=du, —(%L= dv, d—CI,}=dw; 47
then
(w2 =) 20 () 2L () Lm0 48)
Now write
T\/—dﬁhz dz, s=pz, (49)

with invariants g; and gs. Assume that s=o0; that is, pz= is a pole of order 2 at z=0:

pz=;1;+C1z2+ ..

p z has two periods 2w and 2w', and the three roots are real:

4 —gos—g3=4(s—e1) (s—e2) (s —es),

(50)
erterte;=0, e3<es<e.
Suppose that gz < 0; then  is real, and o' is imaginary:
y
z=0... @ is=pz=+wo . .. e
. ool ¥ w+o!
Pem—
z=w . ..o+t gz=e; ... e
v
z=w+to ... 0 pz=es ... e3 l,,,,, I
e
z=w' . ..0 : pz=¢e3 ... —00, 0 T w ®

375-031 O-T1 -5
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As z describes a path 0> w0 —> 0w+ ® — ' — 0, the variable z always decreases;

g§=s@'z=\/4s3—gzs—gs=2\/( pz—es)(pz—es)(pz—es); (51)

20 9"=12p%" —mp’, P '=6p2—/2;

A (52)
p (0)==xoo, pw=ey, ¢ (o+o')=es, p o =e;.
Put
Ve—er=g1, Vp—er=g2, Vp—es=ps (53)
91, P2, p3 are doubly periodic but the periods are different:
20 2w ___period
ez | + + 20 20 »
912 + - 2w 4o’ (54)
©oz - — 4w 4o’
93z — + 4w 20’
Now
S< <P < put < a? < pl
Put p?=s+h,a?—h=e;, B> —h=ez, 2—h=e3, h=(1/3) (a*+ b2+ ¢%); then we have
ds =du;
2V (s—ei)(s—ez) (s—e3) ’ (5)

u varies on the real axis from 0 to w, and s varies from +® to a?—h=-e;. Similarly, put

pi=gpv+h, and let v vary from w to w+ e’ so that u? is real. Put 2= pw+ A and let w vary
from v+ ' to »’. We have

7CZ:(W—&) (pv—e1) (pw—es) |
’ (ex—e2) (e1—e3) ’

e (Br—en) (o= es) (gw—er)
(e2—e3) (ea—e1)

(56)

popu—es)(pv—es) (pw—es)
(es—e1) (es—e2) ’

or, with

\/r@z—er—or(z) iloa G(Z)=% £(z) =—p(2),

T o(z)’ dz?

01=w, =0, Ww=—0w—o, n=0w), . (r=1,2,3),



LAME FUNCTIONS 59
we have
— o Ul(U)UI(U)Ul(w)
F=Eem o) T e (w)
b gy oz (u) o (v)oa(w)
y=Eemeaten) = o o w)
and
— b s o3(u)os(v) o3 (w)
g=Eem0(08) N ()0 (w)
where
oo(u)=enpe TEX Oy gy
U'(wr)
The Laplace equation now takes the form
4 2y a2y
(v —pw) PR (pw —pu) ERl (pu—ypv) G 0 (57)

ELLIPSOIDAL ‘HARMONICS

We now express p, u, v defined by equation 43 in the form of polynomials of x, ¥, z.
Consider a polynomial Q. (x, ¥, z) of degree n and replace x, y, z by their expressions (equa-
tion 43) in terms of p, u, v. Quantity Q, is symmetric with regard to p, u, v since it is sym-
metric with regard to x, v, z. If we consider Vp?—a? as of degree 1 with regard to p, then
Q. is of degree n with regard to p. We distinguish four classes:

1Ist class:

anp(xzv J’Za Zz)a n=2k.
Q(x%, 9%, 22) = D(p?, p2, 12).
This is of degree 2k with regard to p, u, v

2nd class:

Qn=xP(x2, y2, 2%), n=2k+1.

xP(x2, 92, 22) = CVp2—a?2 Vul—a? V12— @2 D (p% p1?),

’ yP(x2, y2, 22) =C'Vp2— b2 Vu2— b2 V2 —p? O (p2- p.é’ v?),

ZP(x2, y2, 22) =C"Vp2 — 2 V2 — ¢ V2 — ¢ ®(p® p2, 12).
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3rd class:

Qn=yZP(x2a y29 22)9 n=2k+29

yzP (x*, y?, 2%) - : .
=CrV(p? =) (p?—c?) V(w2 =52 (w2 —c?) V(2= b) (2~ c?) D(p?, w2, %),

zxP(x2, ¥, 22)"
=CV(p*—c?) (p—a?) V(u2—c?) (w2 —a?) V(¥2—c?) (v:—a?) ®(p?, u2, »2),

xyP (x2, ¥2, %) .
~ =C{V(p*—a?) (p2—b%) V(= a?) (u2—0°) V(2= a?) (2 —55) P (p*, u, v?).

4th class:

Qn=2xyzP(x%, y*, ),  n=2k+3,

xyzP (2, 32, 22) =Cz [] V(p*—a?) (p*—b2) (p*>— ) D(p?, p?, v?).

ps sV

Given an arbitrary polynomial P,, we can express it as a sum of eight expressions of each
of these eight forms; it is symmetric with regard to p, i, ¥ and of the same degree as P, with
regard to x, ¥, z.

Next, consider the reverse process.

(1) Take a symmetric function with regard to p, u, v such as f(p?f(u?)f(+?. Since this
is symmetric with regard to the roots of

x? ¥? 22
}\2—a2+A2—52+A2~02—

1=0,

it should be rational with regard to the coefficients of this equation; hence it should be rational
with regard to x2, 2, 22. In fact, by factorizing f(p? in the form

fle)=(p*—a)(p*—az) . .. (p*—au),

we obtain

S0 (1) £ 62) = [ (02— ) (w2 =) (2 = )] .

Put A2= q; in our fundamental identity (equation 42); we obtain

(PP —a) (2 —ax) (vz—ai>=0( Eo o), (58)

or

22 y2 22 )
—1)=0(22, 52, 22).
o;—a? ai—b2+ai—c2 Qs 5%, 22)

FE)f e =c I

i=1
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(2) Similarly.
Vei—a f(p?) Vi—a? f(u?) ViP—a® f(*) =2Q (%, y*, ),
VPI—b2 £ (p?) ViE=b2f(u?) Vi2—b* F(»*) =yQ(*, % 2%),
Vpi=c® f(p?) ViE—c® f(u?) VP —c® f(v*) =20(s* y*, 2%).

® 1 Voi—a®) (02— 5% f(p?) = xyQ(a%, 32, 22),
[I VO =8 (0* =) f(p?) =y2Q(a*, ¥*, 2%),

[T V(p*—c?) (p*—a?) f(p?) =zxQ (2%, %, 2%).

Ps by V

) V(p?—a?) (p2—b?) (p*—c?) f(p?) =xyzQ(x?, ¥*, 2%).
Py ey ¥V
Problems concerning a sphere are dealt with by a linear combination of spherical

harmonics

r"Py(cos 0), r*P™ (cos 6) ° me,

sin

with positive integers m, n. If we put cos 6= z/r, then r"P, (cos 6) is expressed as a product of
linear factors with respect to a2, 2, z2. Tesseral harmonics are either of the eight forms, such
as a product of linear factors with regard to x?, »?, 2%, multiplied by either 1, x, , 2, yz, 2x,

Xy, XYz
Similar problems concerning an ellipsoid are dealt with by ellipsoidal harmonics (Lamé,
1839; Niven, 1892; Hobson, 1931).

x2 y2 22
—] = =A2.
ot Gt TGz 1= 0m B 59)

then the foregoing four types of expressions are written
x vz
1y P xyz ¢ 102, . . On;
z xy

0:0;. . .0,=I1(0) is an ellipsoidal harmonic of the first class; x11(®) is of the second,
yzH(@) of the third, xyzI1(®) of the fourth.

In order that I1(®) = 0,0, . . . O, may satisfy the Laplace equation, it should satisfy
3 () ( 2 2 2 &, 8 )_ '
(3x2+6y2 9z Z)H(Q) pz—l 30, Op_a2+0p_b2+9p—02+q§1 0,— 0, =0, (60)
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or we would have

1 1 1 m. 4 B
Gp—a2+0p—b2+0p_cz+§ 8,— 0q 0 .(p=12.. ., m).

Put A+1(6) =ﬁ (6—0q),

=1

a polynomial of degree m with regard to 6:

dA(8) _ .,
2= Ai(0)

d

is a sum of m—1 products among 0—6,,. . ., 8 — 0y, and

L) _ p(6)

de?

is a sum of m—2 products among —0, . . ., 6— 0n. Hence

" A1(6p)

A1(6)
is twice the sum of the reciprocals of ,— 60y, . . ., 8,— @n. Since

o m

1T ©

=1
is harmonic,

1 1 1, 2A78)

b—at 0-b2 9= A(6)
should vanish for 6=0,, . . ., 0, Hence

(0—a) (0-2) (0—c)AL(0) +3 | 3 (9=a2) (0-%) | i)

a, b, ¢

is a polynomial in @ which vanishes for =6,, . . ., Om. Hence it should have factors (6—6,)
. . . (06— 0n) and be of degree m+1 with regard to 6; and indeed the coefficient of ™1

is m(m-+1/2). The factor of [(—86) . . . (0—0n)] is thus m(m+1/2)8+C, where C is

determined later. Hence
(0—a2) (0—b%) (8— c2) AY(0) + (1/2) [ 3 (0—b2><0—c2>] AL(6)
a,b,c

=[m(m+1/2)0+C/4]A:1(0).
An ellipsoidal harmonic of the first class of even degree n is of the form

nf2 2 2 2
; X ¥ z
-1
,ﬂ(ep—a”op-—bﬁe,.—cz )
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where 61, . . ., 04 are zeros of a polynomial A;(6) of degree n/2, and is the solution of the
differential equation

4\/(7-—a2)(0—b2)(e—c2)%[Wo—az)(e—bz)w——cz) ‘fi’;‘ ]

=[n(n+1)0+C]A:(0). 61)

This is called the Lamé equation.
For the second class, take xI1(®,) of degree 2m+1, and consider

Ax(6) =[] (6—6,).
Put =t

we again obtain the Lamé equation

4V (6—a?)(6—b%) (0—c? %[m—az)(o—bz)(o—cz)fl%]

={(2m+1)(2m+2)0+C]A(9).
For the third class, take :

2 1] (@)
p=1i

of degree 2m +2;-we obtain the same equation with n=2m+2.
For the fourth class, take

' m (®‘
XYFVI\;[T )

of degree 2m+ 3; we obtain the same equation with n=2m+3.
As we shall see later, there are n/2+ 1 of the first class and 3n/2 of the third class when
n is even, and there are 3(n+1)/2 of the second and (n—1)/2 of the fourth class when n
_is 0dd; in total there are 2n+ 1 harmonics.

LAME EQUATION
We try the solution of AV=0 in the form V= f(p2)f(u2) f(v?)=RMN; then, substi-

tuting in equation 46, we obtain
Ad dR B d(,dM ., o Cd ( dN)
(M2_V2)_R_E_(A__)+( 2 )Md;L(Bd >+( P Ndw Cdv 0. (62)

Obviously,
(w2 =)+ (2= p?) + (o —p2) =0,

(n2—v)p2+ (12— p)p*+ (p* —p?)p? =0.
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Hence

or, with constants K and H, and by equation 47,

‘flR (Hp*+K)R, ddl’]” (Hu2+K)M, %ﬂ=(ﬂy2+K)N 63)

Let us determine H and K so that R is a polynomial f(p?) of p multiplied by either of the
eight factors 1, Vp2—a2, VpZ—02%, Vp2—c2, V(p2—b%) (p?—c), V(p*—c?)(p2—a?),
V(p2—a?) (p2—b2), V(p*—a?)(p?—b2)(p*—c?); f(p?) or such products are called
Lamé functions, and the product f(p%)f(u?)f(¥?) or similar products are called Lamé
products.

A similar computation on equation 57 glves

d’R
du?

B=Hh+K. 64)

This is called the Lamé equation. It can be shown that H=n(n+1); but B or K should be
so chosen that the solution is of the form we desire.

By a similar procedure we can derive from ellipsoidal harmomcs I1(®) the Lamé equation
in the form

d’R ( 1/2 1/2 1/2 ) dR [n(n+1)p*+B'] R
Ao \P—a 2=t pP—c*) Ao 4(p*—a) (=) (P~ <)

This is called the algebraic form of the Lamé equation (Stieltjes, 1885; Klein, 1894; Bocher,
1894); putting B'=B— (1/3)n{n-+1) (a®+b%+c?), we obtain

d?R
du?

which is of Weierstrass’s form. Also, by putting s =eu, we obtain

d2R+< 1/2 4 1/2 4 1/2 )%1}— [n(n+1)s+B]R

ds* \s—e s—e s—e3 T 4(s—er) (s—e2) (s—e3)’

which has the singularities at e, e;, e3; the corresponding exponents are 0 and 1/2. The expo-
nents for the singularity at © are —n/2 and (n+1)1/2. Put p=£ snx, a=k, b=1, ¢=0,
x=uVe —e3, B=[1/(e1—e3)][B+esn(n+1)]; then we obtain

2R
Cfiz [n(n+1)kzsn2x+B]R 0,

which is Jacobi’s form.
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PARTICULAR SOLUTIONS

We try to satisfy equation 64 by a polynominal R of degree n; the solutions belong to
four classes: ‘

I: R=f(p?), : - n=2k

I: R=Vp*—a*(p?), R=Vp*—=bf(p*), R=Vp*—c¥(p®), n=2k+1,

IL: R=V(pP=52) (pP—)f(p%), . . ., . n=2k+2,
IV: R=V(p*—a®) (p*—b*) (p*>—c*)f(p?), n=2k+3,

choosing constant B suitably. Otherwise the solution is a doubly periodic function of the -
second species by Hermite. Note: The above values of n for class III (2k+ 2) and class IV
(2k+3) belong to what Appell (1921, p. 136) calls the “general picture (Tableau général)”
for those classes. In the special discussion which follows (here, as in Appell), n=2k for
class IIT and n=2k+1 for class IV.

Note also that a given class may have more than one “form’; these are indicated: II,,
II,, etc.

Class I:

R=f(pu) =¢*u+ awt-u+. . .+ or_1(pu) + ax, n=2k.

Substitute this expression for R in equation 64 and use equations 51 and 52 for ¢’ and ¢";
then it is evident from the coefficient of p*+! that n=2k. From the coefficient of ¢*, we obtain

4(k—1)(k—2)ou+6(k—1)au=n(n+1)os+B, or B‘=—2(2n—1)a1. (65)‘

From the coeflicient of 9° we obtain the characteristic equation, which is an algebraic equation
of degree k-1 for class I:

Ci. (B)=0. (66)
This equation is obtained after substituting the values of a1, . . ., o determined by the
equations obtained from the coefficients of p*~1, . . ., pl.

Class T1I:

R=Vpu—e; Vou—e; (p*~u+Bw*2u+. . . +Br-1), n=2k.

The characteristic equations are of degree k with regard to B for three forms of class III:
CiIM(B)=0, C¥2(B)=0, Cl3(B)=0. (67)
Thus, when n is even, the number of roots of equation 66 is £+ 1, and the number of roots of

equation 67 is 3k; in totél, the number of roots Bis4k+1=2n+1.
Class I1: :

R=Vpu—ei(p*+aw* 1+ ... +ay), n=2k+1.
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The characteristic equations are of degree k+1:
Cii,(B)=0, C.(B)=0, Cxl:il(B)=0- (68)
Class IV:
R= Vpu—e; Vpu—e; Vou—es (p*~1+ . . . +Br-1), n=2k+1.

The characteristic equation is of degree k:

CY¥(B)=0. ' 69)

Thus, when n is odd, we have 3 (k1) solutions for B of the second class and k solutions
of the fourth class; in total, we have 4k+3=2n+1 solutions. Thus in either of the cases,
we obtain 2n+ 1 values of B; hence 2n-+1 Lamé functions

RVR} ... RL ... R+ (70)

Hence there are 2n+1 products RIM!N!, or 2n+1 Lamé bolynomials Qix, ¥, 2)5 - - o
Q% +1(x, v, z), each of which is a linear combination of the Lamé products

2n+1
Q(xv ¥, Z) = 2 AIR%M%NIIH

i=1

where A; are 2n+ 1 arbitrary constants, and satisfy AV =0.

It can be shown that the roots of the characteristic equation are all real and distinct and
that the 2n+1 Lamé functions are linearly independent. We give the expressions for the
Lamé functions of low degree. (The order follows the value of r rather than class number.)
n=1: 2n+1 =3 functions:

R=YVou—e, R=Vpu—e,, R= Vpu—es;
or

R=Vp®—a®, R=Vp?—0b?, R=Vp'—<%
RMN= Vou—e, Vov—e; Vpw—e =Cx, C = constant.

n=2: 2n+1=>5functions:
Class I11:

R=Vpu—e Vopu—es, . . ., . . .,
RMN= Vu—-e; Vov—e; Vow—e; Vou—ez Vov—es Vow—e;.
= Cxy.

Class I:
2
LR (6pu+B)=R.

Put R=gpu+a, then d2R/du?=p"'u=06p2—gs/2 and 6p%2—g/2=(6p+B)(p+a).
Then 6+ B=0 and aB=— g2/2. The characteristic equation is B?= 3g,,
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Hence we have two functions

n=3: 2n+ 1=7 functions:
Class IV:

Class II:

(@u+%—%) Veu—e. (a=1, 2, 3).
The characteristic equation is B2 —6Be; +45e2 — 15g,=0.
We have 2 X 3 functions of class II.
n=4: 2n+ 1=9 functions:
Class I:
3 2

" ___g — 2__2
o'u 7B(pu,-i-MOB z &

The characteristic equation B3 —52g,B+4560g;=0 has three roots; we have three
functions of class L.

Class I1I:

(pu—Se—15) Vou—enr pa—en.

The characteristic equation B2+ 10Be;—35e2—7g:=0 has two roots; we have six
functions of class II1.
I.AME FUNCTIONS AND SPHERICAL FUNCTIONS

We derive various properties of Lamé functions by comparing them with spherical
functions. Put

x=xVp>:—a?, y=yV p%— b2, z=zV pt—c¥ (71)

then a2+ y2+22—1=0. As u, v vary, (x, ¥, z) describes an ellipsoid, and (%1, y1, z1) a
sphere. We have

Bt Y N e Yt o W (oo 1t
R T R DT O P IO N

Put
x1=sin 6 cos ¢, y1==sin @ sin ¢, z1=cos 0; (73)

then the Lamé product MN of order n, being a function of 4 and v, can be expressed in terms
of 0 and ¢ in the form

MN =P, (sin 8 cos ¢, sin @ sin ¢, cos §) =Y,. (74)

In fact, let the corresponding polynomial for RMN be Qy and separate it into a sum of homo-
geneous polynomials ’
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Qn(xa Y, z)=Pn(xa Y Z)+Pn—1(x, Y, Z)+. . .+ Po.

Then ,
RMN = pP, (f Y £>+ pn-1P,_ (%, 2, £>+. ,

P’ p PP

A2 __ 2 VA2 p2 a2 2
= pnP, (—p—p—i sin 6 cos ¢, —-—P—-—b—sinﬂsin @, L cos 0>+. -

For p— o we have

R A/ n2— 2

ﬁ—> 1 and __p;_a__) 1, , v e

and we obtain equation 74.
Conversely, the most general spherical functions are written

2n+1 o
Yn(0, )= Y AM:NE, (75)
i=1
or, more generally,
0 w 2n41 X o
O, v)=3 Va= TS AMING, (76)
n=0 n=0 i{=1

Suppose that a—> b; take b>=a?—¢, u?=a?—eu'?, 0<u’' <1, > 0. Then

T2 22 22
x=Vpi—alpu' Zz V2’ y=\/p2—-a2\/l——u'2 ,%2‘:%’ 2=Vpi—c? |4 .

—_C a2_c2

Putting u' = cos ¢, Vp:—a®=r;, Vp2—c*=r; we obtain

24,2 2. 02
sin e-—-\/;_’c’z, cos 0=\/Zﬁ_; (77)

x=r; sin 0 cos @, y=ri sin 0 sin ¢, z=rz cos 8. (78)

and

Let a— b; then y/x=tan ¢; we arrive by this degeneration at a function of 8 and‘<p. The
product MN= f(u)f(v) satisfies the equation for a spherical function, and reduces to
Y.(0, ¢). The spherical harmonics are

X; sin by, X:l' cos py, (p=0, ls LR ] n)7 . (79)
where )
dr+p(l—2)n vZ—c?
X,{’=C(1—t2)"’2“—d(ﬂ,:};_), ‘t=cosf)= prapry
Thus

cos
pu
M— sin P#° N— XP.
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Class I: n=2k and M— fi(p'?) = fi(cos? ¢) = cos pe, since n is even.
Thus the limiting values of M are

cos 0=1, cos 2¢, 'cosilka, R cos 2kg = cos ne; 80)
and those of N are .
X%, X2, ..., Xx @1
The Lamé equation
2
(fig= [n(n+1)ev+ BIM,

after substitution of u2=a2—eu'2, a2—b2>=¢, u'= cos ¢, becomes d?M/de?= constant M,
with
' n(n+1)a?+K

a2 — c? (p=0,2,4,.. .,n),

constant=—p?=—

B=n(n+1)h+K.
The valué of constant K is determined by

n(n+1)a2+K; _
a?—c? -

,0,

n(n+ 1)at2+Kz‘=22 (82)

a?—c? ’
n{n+1)a2+Kgyy
Py = (2k)2

Class III: n=2k, and M= V=5 V= f(u2) = Ve(I—p?) (a?—c*) fin™);
fis of degree k—1, and M — sin pp, (p=1.3 .. ., 2k—1).
The characteristic equation is

net DEHE_ e (p=1,3, .. .. 2—1). ®3)

a2__c2

There are k roots for each class Ifl;, IIL, and IIl;. Similarly, we obtain 2n+ 1 equations
of the form of equations 82 and 83 for n odd, 2nd class and 4th class.

Next, suppose that b—> ¢; we take b2=c2+e and »*=c>+ ev'2. Everything proceeds
similarly.

THEOREMS

All roots of the characteristic equations are real (Liouville, 1841). Suppose that n is even:
then there are k+1 solutions of type I, and k solutions of type III,. Let the coefficients of the
highest degree terms of B be equal to 1. Let b vary continuously between a and ¢ by fixing
a and c. The coeflicients, and hence the roots, vary continuously, and imaginary roots can
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appear at first when two consecutive real roots become equal. Let 6— a; when b=a, the

characteristic equations reduce to the form of equations 82 and 83. The roots of equation 83
are bisected by the roots of equation 82:

Bl Bz PO BkBk+1, ‘ (833.) :
BB, ...B. ~ (83b)
Let b vary continuously from a to ¢ (the roots vary continuously). Suppose that B{= B;=B;,

since Biis always between B; and B;; that is, a double root of equation 83a would then coin-
cide with a simple root of equation 83b. On this assumption, we should have

2 2147
‘Zﬂf= [n(n+Dpo+BiIM, L= [n(n+1)po+BiIN,
v dv -
with B = B{. Then
, d*M &M’ ,__dlll__ dM"_
M o M-dvz =0, M o M——dv'—constant.

Here

M=f(pv), M = Vpv—e; Vov—esfi(pv) =patwsvfi(pv).

If we add 2w or 20’ to v, then M and dM/dv remain unaltered, but M' and dM'/dv change their
signs. Hence M'(dM/dv) —M(dM'/dv) would change its sign. Thus we should have
M’ (dM|dv) — M(dM'|dv) =0, or (M'[/M)= constant; this is impossible. Accordingly, equa-
tions 83a and 83b cannot have any equal root, and equation 83a cannot have any double roots.
Therefore the roots are always real. If the axes of the ellipsoid are imaginary, then the roots
may be double, and 2n+ 1 functions of order n may then coincide (Cohn, 1888).

The 2n+1 Lamé functions of order n are linearly independent. Suppose that there were
a relation’

r
E'yiRi=0, r<2n+1l,
=

with constants v;. Carry out the operation

2

d
Eﬁ—n(n+ 1)pu

and repeat it (r+1) times. Then, since

IR _

D [n(n+1)pu+BlR=0,

we obtain
S yByR=0 (s=1,2,...r=1),
i=1

where B; is the corresponding value of B for the function R;.
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Eliminating v;R;(i=1, 2, . . ., r) from these r equations, we obtain
1 1 1 1...7
B, B, B, =(= H’ (Bi—Bj)
......................................... .i_¢j
1,3

(By)™1t  (By)r-t. . .(Byr-? i

As we have proved, there is no equal root. Hence this is contradictory, and these Lamé
equations are linearly independent.

DEVELOPMENT IN LAME FUNCTIONS

Write
o= 1 > 6= 1 (84)
(p*—u?) (p*—v?) * (p—w?) (p5—v?)’ o
and suppose that the ellipsoid Es is for p=po. Then,
Eo

where the integration is extended over the surface Eo; MN and M.N, are different Lamé
products either of the same order or of different orders. This relation (equation 85) shows
that the system of Lamé products is a set of orthogonal functions. In fact, ¥=RMN and
Vi=RiM:iN, are potentials and satisfy AV AV;=0. By Green’s theorem,

f(VAVl—VIAV)d7=J (V"’—V‘—V1 )do- 0.
T Ey

Suppose that p increases in the outward normal; then dn= adp, and V' =9 ¥[d n by equation
47. Hence

oV_oV _1aVdu_1V' _ |4 . ,
in odp aaudp ad \/(p— ©?) (p? _yz)_/RMN' (86)

Similarly,d V1/d n=¢RiM,N,. Consequently, the Green formula becomes

¢ (RMNRIM Ny~ R:MN,R'MN)do=0.

Eo

For p = po, the Lamé functions R, R’, Ry, R’| are constant. Hence the system of Lamé prod-
ucts is a set of orthogonal functions. Note that we have proved the relation

du
T £. 87

From this theorem, we can develop any arbitrary function over the surface of the ellip-
soid p= po. Suppose that
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®(u, v) =S AMVe. (88)
0

From equation 85, we have

fE D, v)loMipNido = Ay J’E CoMiNYdo. (89)

Now dsy= Bdu, dss= ydv, do= dsids;= Bydudv, or

d WV
O = e V.
=B

From equation 89, we obtain

dp,dv. (90)

f@(ﬂ, V)Mka d/.LdV Akj Mka

v— v-

Thus the coefficient Ax can be determined (Lindemann, 1882; Titchmarsh, 1946). Especially,
if the degree of ®(u, v) is lower than that of M /Ny, then

fE O (uv)oMrNrdo =0, (k>n). 91)

Furthermore, equation 85 can be written

f f (90— 90) M (6) N () M (0) N (w) dod =0,

where the limits of the integration are 0 < (v—w)/i < 4w'/i0 < w— ' < 4. Since there is no
function other than any function of the Lamé products, such as M1V, which satisfies equation
85, the system of Lamé products is complete, and equation 88 is unique. For the convergence
of the series (equation 88), it is necessary and sufficient to have the convergence of the series

3 4
k=1

in accordance with Riesz-Fischer’s theorem. We can extend this to almost-everywhere
convergence by Menchoff’s theorem.

ZERO OF LAME FUNCTIONS

A polynomial f(p?) of p? has a real distinct root between a%and ¢ -

Theorem: Suppose that there were an imaginary root. Factorize f(p?) into a factor e(p?)
with real roots alone and a factor ¥(p?) with imaginary roots alone, so that F(p?) = o(p®)U(p?);
we know that ¥(p?) always has the same sign and ¢(p?) changes its sign. Take M= f(p?),
Nie=f(?), and put ®(u, v) = @) (¥*):

L ® () £aMiNedo = f lo(u2)e (v2) 124 (u2) (1) do.
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But the degree of ¢, and hence of @, is lower than that of M. Accordingly, this integral is
zero by equation 91. But the right-hand side is positive. Hence it is impossible to have imagi-
nary factors, ‘

Next suppose that we have multiple roots. Factorize f(p?) into a factor ¢(p?) with real
roots alone and a factor ¢{p2) with even multiple roots alone. We can carry out the proof
similarly to the above, and find that it is impossible to have multiple roots.

Finally, factorize f(p?) into a factor ¢{p?) with roots between a? and c2 alone and a
factor y(p?) with the roots outside of a® and c? alone. We can carry out the proof similarly
and find that it is impossible to have roots outside a® and c2. Note that the Legendre poly-
nomials have roots between —1 and +1 and that the roots are real and distinct.

Stieltjes’ theorem (Stieltjes, 1885): A Lamé function of degree n can be written

(p*—a®) " (p* =89 "(p* =) " [ (0>~ e,
p=1

where ki, K2, ks are 0 or 1/2, a4, . . ., am are real and distinct and are distinct from either
of a® or b% or c?, and n/2=m+ k1 + K2+ k3. The r-th function among these m+1 Lamé
functions has its r—1 zeros between ¢* and b?, and its remaining m —r-+ 1 zeros between

b? and a?; thus the zeros oy >+ s es Om for these m+1 functions are contained between
c? and a?
For proof, take real variables ¢1, . . ., ¢m such as
2 < pp < b? (p=1, ..., r—1),
b <gp<ga? (p=r,r+1, ..., m),

and consider

m
[T=T11 (ep —a2|<1+1/4 - |op.— b2|xz+1i4 - |@p — c2|<>+1/4) - T leop—al;
p=1 p=q
II becomes 0 when all ¢, take their smallest values and when they take their largest values.

If ¢p are all distinct from each other and are distinct from either a2 or b2 or¢?, thenII > 0; I is
continuously bounded and can reach its nonzero, positive upper bound. The maximum
condition is

3 log H=6 log 11

=...=0,
de1 - a2
or
ki+1/4 ket 1/4 K3+ 1/4-
+ =0, =1,2,...,m).
©op— a® ——bz 2 Pp— <Pq (p m)
This is equation 60 by which we have determined @, az, . . ., op. Thus the equation for
determining @y, . . ., Qp is
2 <oy < b?, (p=1,2,...,r—1),
b <oy <a?, (p=r,r+1, .. ., m).

375-031 O-71 -6
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Hence if r is one of 1, 2, . . ., m-+1, then there is a Lamé function that has r—1 zeros
between ¢? and b® and m —r+1 zeros between b* and a®.

This theorem is a particular case of Klein’s oscillation theorem (Klein, 1881); that is,
in the equation

d (., d .
E(Kﬁ)—(;y:() with  G=£(x) = (ot Mat. . . +Aam)g(x),

£>0, K, ¢, g are continuous, and with the boundary conditions that

a}yr(ar) —ar_’}”r(ar) =0, B;'yr(br) —,-Bry,’.(br) =0, . (r= 0,1, .. ., n),
in the n+1 closed intervals (aobo), . . ., (@nbr), @0 <be<a:1<b:1< . .. <ap<by we
can determine uniquely the characteristic numbers Ao, Ay, . . ., Anso that the characteristic
function ¥, has just m, zeros in ar < x < by, where mo, mi, . . ., mn are given positive num-

bers including zero. The value of A for which the solution exists that is not identically zero
is called the characteristic value, and the corresponding solution the characteristic function.
Lamé products are characteristic functions, and the corresponding B are the characteristic
values.

LAME FUNCTION OF THE SECOND KIND

The Lamé functions R that we have derived are particular solutions of the Lamé equa-
tion; Hermite found other particular solutions S independent of R:

2
%u§2= [n(n+1)pu+B]S.
we obtain
d*S d*R_
| RS q2="
or
R%S;—S.id%=2n+ 1. (92)

Such Lamé functions are of the second kind. Integrating this equation gives

u2n+1
o R?

The general solution of the Lamé equation is C1R + C2S, with arbitrary constvants Cy and Cs.
(1) SMN satisfies AV =0 as does RMN:

S=R

du. 93)

p 2n+1 pdp

S=R .
- B Vp—a) (P8 (=)

(94)
As p varies from© to a, S> 0 for all p. Since R is of degree n,
_ p( 2n+1 1
S——p"L (_p2"+2+ .. .)dp=pn+1+ C e

While the development of p begins with p*, S begins with 1/p»+1,
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(2) Suppose that R, is of the first class; then the poles of 1/[R (s)]2, where s=pu from
equation 49, are u1, . . ., is. Function R(s) =a(u—u,) + az(u—u,)2+ . . .; but we see

that a2 =0 by inserting this series expansion in the differential equation. Hence the principal
part of 1/[R(s)]? is 1/a?(u—u,)? with residue 0. Thus we can determine 4, so that

[R(s)]2= 3, Arp (u—ur)

has no pole at the points congruent to any one of u,. This doubly periodic expression without
any pole is equal to a constant 4 by Liouville’s theorem. Hence, by integrating we obtain

# du ‘ n
L [‘R’(W”u—gl AL (u—ur) + L (ur)].

Since R(s)=R(pu) is an even function of u, we can group the roots in pairs such that
Un—r="-Ur+1, and we have

v du nj2 ‘
L [R(S)JZ_A“—TZIA*[“”"“')ﬂ(wur)]

2 n/2 Ar '( )
=Au—2{(u) §A’_rg m%)_

Hence

Sa(s) = (2n+1) [Au—zg(u) $ A,.] Ra(s) +¢' () wnias (5), (95)

where wpj2-1(s) is a polynomial in s of degree nf2—1 (Liouville, 1845; Heine, 1845; Linde-
mann, 1882).

For computing the numerical values of Lamé functions, Scharma (1936) gave recurrence
formulas for Lamé functions after the fashion of Whittaker (1929) for Mathieu functions and
of Humbert (1917) for Legendre functions. Write the Lamé product by Ef(u)E}(v)E! (w);
then we obtain

QAlns, mtEf; + Bas, mtEi‘_' HMens, mtE:n, } 96)

Umt, nsEi;L + Bme, nsEfnr— Mmt, nsEf,,

where pius, me and pme, ns are constant, such that cns, me= ame, ns, and B, ns are determined by
differential equations.
Whittaker (1914a, 1914b) obtained an integral equation for Lamé functions:

4K. .
y(x)=A\ f (dnxdns + & cosh nenxens+ k&' sinh nsnxsnx)®y(s)ds,
0

where 7) is a constant, k*= (a®—b%)/(a®—c?), k*+ k'>=1. The method has been generalized
to functions satisfying Sturm-Liouville’s boundary value problems (Whittaker, 1914c¢; Ince,
1921, 1923).
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NONALGEBRAIC SOLUTION

We have obtained the solution in the form of polynomials; we now seek the solution with-
out such a restriction. For n=integer such a solution has been obtained by Hermite (1878)
and Halphen (1888); the solution is called the Heine-Hermite function. For n equals a half-
integer, the solution is called the Heine-Wangerin function (Brioschi, 1878; Halphen, 1888;
and Crawford, 1895). '

A uniform function which has no singularity other than poles is called meromorphic.
If a meromorphic function is multiplied by a constant w or u’ when the period 2w or 2w’ is
added to the variable u, then the meromorphic function is said to be doubly periodic of the
second species: . '
F(u+20w)=uF(u), F(u+20')=p'F(u).

If ®(u+2w)=eou+v® (1), ®(u+2w') =e2*+>'® (1) with constants a, b, a’, b’; then
F is called doubly periodic of the third species by Hermite. Such functions are written in the
form '

_ uH(u—bl) ... H(u—»5,)
F(u)=Be Hu—ay) ... Hu—a,)’

— A0 u+ uH(u—bl) ML H(u_br)
@ (u) =Aexv*+p H(u—a;) . . . Hu—a,)’

where A= (1/2w) log u, and A, B, a, B are constants. Or by using Weierstrass o function

_H@w) u2/(2w)
U(u)_H’(O) enil® ’
we have .
—B'au o(u—b1) . .. o(u—b,)
H(u)=B'e olu—ai) ... o(u—ay)

Suppose that y is a doubly periodic function of the second species; u=0 is a pole of
order n. If we can choose so that the roots of ¥ are the same as the roots of ¥”, then y"/y is
doubly periodic and has a pole at u = 0. Hence it is of the form n(n+1)pu+ B. Such a func-
tion ¥ can then satisfy the Lamé equation. Take

¢ o(uta)
y‘H ol(a)o(u)

e-—u{a,
where I1 extends over n factors:

' 1 ‘u—g
T=3 luta) —tu—ta]=3 =5

or

Y 1o (p'u—p'a)@’u—p'd)
y =2neut paty X (ou—pa) (pu—pb)

Decompose the last sum into simple elements; then
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1(p'u—p'a)(@u—p'd) p'atp'b
2(pu-+pa+pb) +_pa—pb

2. (pu—pa)(pu—pb)

[L(u+a)—L(u+b) —La+Lb].

Collect the terms of the form {(z+a) —{(a) and put the coefficient equal to zero. Similarly,
operate on {{u+b) — (). If we put

pa=a, pla=a, pb=pg, - p'b=h, .. .,
with o
a’2=4'a3—g2a—g39 B’2=4ﬁs_géﬁ—g39 o o sy

then we obtain n equations

a'+B  oa+y o +8 _
por + a7 +——3 +...=0,
g +a  B+Y _
L0 ) L AT =0,
B=a BT -

b

among these n equations, n—1 are independent. The remaining equation isy"ly=n(n+1)pu
+ (2n—1)Zpa. Thus the nth equation is

B.

2n—1)(a+B+. . )

For n=1, we have

—cT=a) . .=
o »yCU(u)e , pa=B,
and y"= (2pu+ B)y.
Forn=2,
y=C o(u—a)o(u+b) oo,

o2u
p'atp'hb=0, pa+eb=3%B,

and:

a?—Bo+p2—ig;=0..

These are Heine-Hermite functions (Halphen, 1888; Hermite, 1885).

For the Heine-Wangerin function, we put (¥>— 1/4) instead of n{(n+ 1) for the first type
(Wangerin, 1904) and put (2v-+1) (2v+ 3)/4 instead of n(n+1) for the second type (Haentz-
schel, 1893):

d’y

o= [Hu—e)) —K]y, (Ist type)
dzf)’_ (eh-eV) (ek_ex)_ :I

T [ H pr— K|y, (2nd type).

Compare Sparre (1883).
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. , ‘
GENERALIZED LAME FUNCTIONS

An arbitrary surface of the fourth order that has a circle as a double curve is called a
cyclid. Darboux considered an orthogonal system from confocal cyclids (Darboux, 1887,
1910; Klein, 1893, 1926; Blaschke, 1929; Bocher, 1894).

The equation of a three-dimensional sphere is

K(X*+Y?*+Z%)+24X+2BY+2CZ+ D=0,

where the radius is given by p*= (424 B2+ C?— DK)/K?. This equation can be expressed
in the form

X4V 422 R X+ V224 R?

20X +2BY+2yZ + 8 R ie R

0,

where the coordinates of the center are

and

_RVa?+ 82+ + 3+ €
P 6+ie

If we take o?+B%+7y2+82+e*=1, then the radius is R/(8+ie). The condition for the ortho-
gonality of two spheres is

ao'+ BB+ yy' + 88’ +ee"=0.

Consider five spheres, any two of which are orthogonal and let

2 2 -R2
§£=2akX+ZBkY+2’)’kZ+ akX b e 4 R
Ry R |
2 2 2
i THEELHR =12, .., 5),
where ai+ Bi+yi+8i+et=1, arar +BrBr+ - . . +exerr=0. We have

] 2 2 2 2__Rp2\2 2 2 2 27\2
2(_%1‘_) =(X+Y+Z R)+(X+Y?FZ+R)+4X2+4Y2+4-Z2=O,
=\ R iR

or

Sk__s.

>
k-1

3
L ol

Put x;:= A (Si/Rx); then .
x3+af+xi+a%+x2=0.
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Such xi are called the pentaspherical coordinates:

A surface which is represented by

g 2=

is called a “cyclid” and is a surface of the fourth order in Cartesian coordmates Similarly
to the quadrics in Cartesian coordinates, the equation

S X
i;)‘_

represents a triply orthogonal system of confocal cyclids, and a point in space is determined
by p, ., v such that

Let

x; 1/2

Ry
Ve=|l—/——==| Y(u,v,p);
> et
then AV =0 is satisfied if ‘\I’ satisfies

(p—v) Y (w—p) Tt - &5

+(p—2v)(v—p)(p—n) [12 (u+v+p —%2 ei] V=

Or, letting ¥ (u, v, p) =E'(w)E"(v)E" (p), we obtain

&B2E [ 5 3
de?

Sa=| 2wty (2 ei> A2+AA+B] E

where

t=f2——‘%(h_), f(A)=Q—e1)(A—ez)(x—es)(k—eo(x——es).

The generalized Lamé equation is
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dy 1/ 1 1 \dy
| e | ——— poC A
dx2+2 (x—el+ t '+x—en)dx
1 n(n—4) nes N _
+(x—-el) T (i—e) [ 6 * +Cpgx® 3+, . .4co| y=0;
or

a? —4)
d—g=[—4(—(nn—:-1)7f(x)+ax"‘4+bx"‘5+. . .+m] y.

A study was made by Klein (1894, 1933) on the theory of monodromy groups, ikosahedron
groups, etc. For Lamé functions see the works by Todhunter (1875); Heine (1878, 1881);
Halphen (1888); Forsyth (1902); Poincaré (1885, 1902); Wangerin (1904); Appell (1921); Hum-
bert (1926); Strutt (1932); McLachlin (1945).

These two figures are seen in Bocher, 1894.
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CHAPTER IV

Theory of Poincaré

DIRICHLET PROBLEM ON AN ELLIPSOID

Let Eo be an ellipsoid for p=py, and suppose that a harmonic function ¥y is given on
the surface as a function of points on the surface:

0 0

Ax= akRgsg

A harmonic function for the interior region is given by
Vi=S SR M N, (98)
0
and for the exterior region by
Ve= axRYS:MiNy. | 99)
0

Since Rx < R? for p < po, and Sx <SY for p > po, the series in equations 98 and 99 are con-
vergent if the series in equation 97 is convergent.

Suppose that the potentials ¥, ¥, V. are caused by the surface density distribution {.
Then

V. aV, .
aﬂe—}—i—n-:=——47r§. (100)
Now Ve oV, d ds d
a—,;-:-=ﬁ'€'l"—i";=2 aRY kMka'&l——z axt oRY(Sy) M N,
and
aVi dR.

=S aspd

MV '—=2 ot oSS (Ri)oMyNy.
83
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Then
—4ml=>" axt MiNi(StRk— S;Rk)o-
(101)
= fo z 2n+1) axM Ny,
by Equation 92. Hence
Vo=2 akR,‘:SWka,
(102)
1
(=20 BMiNk,  Br= 2’;:_; ax;

we know { from ay. Conversely when { is known, we obtain oy from equation 102 and the
potential from equations 97, 98, and 99.
As a special case,

4
{=eloMiNe,  Vo=3 11 €RISIM N,

or, since

_ [ Ldo’_ fst,zN,zda'
Vo—f A =€ A .

we have

/mk]vkdo' 4ar . .
f T on+1 RSM N (Liouville).

In particular, if n=0 and Roy=My=Ny=1, then

S= Rf 2n+1du fdu—

Hence the density distribution { = e#oMoNo=€¢ generates a potential Vy= 41reuo, and, since
Ry=R2=1 and SY=uo, Sx=u, we have

Vi=4meu,, Ve=4dmeu. (103)

The equipotential surface outside is u= constant; i.e., p=0 (i.e., confocal ellipsoids), and
the potential inside is constant, which is in accord with Newton’s theorem. Here {=¢¢,
denotes the thickness of the layer between two homothetic concentric ellipsoids, because

dc _ —o2__2 _K
dn (po 2)2 —172)2 (po 2)2 P Aofopo po’

(104)

where

B Aopo.
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POTENTIAL OF AN ELLIPSOID

According to Poincaré, we put

for n=0:
Ro=1, Mo=1, No=1
and forn=1: | (105)
Ri=Vp®:—a?, R.=Vpi—b%, Rs= Vpi—¢ct,
We have ; |

x=h1R1M1N1, y=h232M2N2, z=h3R3M3N3,
where ; (106)

1 ‘ 1 1

M=@=m @@= M ey eme BT Ems e

We put fdr n=2:

R=V{o—5) (=), Rs=V(pi—ad) (P —c"), Re=V(F—a (p°—b"),

107
R7=p2—a1, R3=p2'—062, (108)
where a2 > a2 > b2 > a3 > c2. However,
Ris=R:R;, Rs;=R;3R;, Re¢=RR,, (109)
so that -
yz=h2h3R4M4N4, zx=h3h1R5M5N5, xy=h1h2R6M6N67 (110)

and the volume of the ellipsoid is
T=%‘ 7TR1R2R3=§ 7TR1R4=§ 7TR2R5=§ 7TR3R6; (11]_)

cos (n, x) =h1/M1N1R4, cos (n, y) =h2/M2N2R5,

(112)
cos (n,z) =hs/M3NsRs,

where n is the external normal.

Now displace an ellipsoid E to an ellipsoid E’ by a trans-
lation OO0’ =€ along the x-axis. The potential ¥; due to E' at
(x, v, z) is equal to the potential ¥ due to £’ at (x—¢, ¥, 2).
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Hence
Vilx, v, 2)=V(x—€, 5,2)=V(x, ¥, 2) —€—

The difference at a point (x, ¥, z) of the potentials caused by E _’__flnd E is _é_ue to the
potential V"=V, —V'=—€(aV/dx) of the surface layer distribution {=PP". Now PP’'=¢€ and’

{=¢€ cos (FT", PP")=¢ cos (n, x) =€ RI£oM:N,
from equation 102. Hence, from equations 97 and 98, we obtain
V,’=4—;‘—' hiRISIR M, Ny,

V;=%7I ehiRIRISIMN .

From equation 106, we obtain

e T ——— ’= — —-“—‘--—T —
dx e b TR° oy R} A R§ ‘
‘Hence, '
Se . 89 9 )
Vi=“'§ x2+R0 y2+k—6 22)
Similarly, A
é—;——-—-e- V= TR1 x, R, P ry R, z.

ELLIPSOID AS AN EQUILIBRIUM FIGURE

Putting V in thereiquation of the é;[uﬂibrium surface

U=V+ wz(x2+y2) = constant,
we have

—T — x2+ (wz—T __g) y2+ (M*T%) 22= constant,

3

which should coincide with
%2 % 22
Ry TR TRy

Thus the co_ndition is
w2=Ssz SRy SsR:z SiR,

or

s v .S v S

(113)

(114)

(115)

(116)

117)

(118)

(119

120)
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and
SeR:—S1R:  S3R3— SRy
RZ =~ R (121) .
Note that
SR> —S:1R1 >0, SaR3—S:1R; > 0. (122)

For a Maclaurin spheroid b=c, equation 121 is satisfied. For a Jacobi ellipsoid, equation 121
can be put in the form

RiS:1_ RaSs
3- 5 (123)
CONDITION FOR AN EQUILIBRIUM FIGURE
Surface gravity g=—dU/dn. on the surface of an ellipsoid
_ 22 yé 2 )
U=K (p%,—a2+p§-—bz+pg—c2 1)+¢
satisfies an important relation: _
‘g¢ = constant. 124)
The value of the constant is determined at the pole, where y=2z=0,
1
U=V, x=RY, w=b, v=c, g=TS% (o R%Rg. (125)
Hence,
g/o=§ wR4SY. (126)

We deform E to another equilibrium figure E', which is repre-
sented by ¢ At apoint Pon E, we have

2
Ug= Vo+92— (¥%+22) = constant.

At a point P" on E', we have U=Uy+ (dU/dn){=U,—g{. Let the potential due to the
deformed layer be v; then the potential due to the deformed E’ at P" is

U+v=Uy— g¢{+ v= constant.
In order that E’ be an equilibrium figure, we should have
v—g{= constant. - 127 ’

Now we have by equation 102

= i Bit oM N i,
k=0
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where Bx and o are both constant and of degree 0. Hence, from equation 91 we have
fﬁkfoMkada'=0 (k=1,2, . ..).

Since the volume is constant,

f§d0=0,

or
3 | ButoMtiido=o,
k=0

_or, by the above relation,

fﬁo/oMoNod0'=Bo J Zudo=0,

or Bo=0. Thus,
{= i'Bk/ioM'kN k- (128)
Furthermore, =
v= i arSIRM Nk, — Br= 2';: 1 ax. (129)

k=0
Inserting equations 126, 128, and 129 in equation 127, we obtain

® 4 < SeRr SR,
Bk (—“‘ RkSk—g/0> Mka= 4'77'Bk ( et ) Mka= constant.
k§1 2n+1 k; 2n+1 3

This should hold for all values of u and v. Hence we should have

SeRx  S:iR:
Bk(2n+l 3 )——0 (k=1,2, ..., ©). (130)
If the quantity Fy in the parentheses of equation 130 is not zero, then 8; must be zero. If all
such quantities F;. are not zero, then all 8 should be zero, and there is no other equilibrium
figure. We proceed to see whether Fr=0. Where n=1: there are only Ry, Rs, Rs. For k=1,
we have B:1(SiR;—SiR;:)=0. For k=2, 3, we have B:=B:;=0, since S:R;—S:R: >0,
S3R3—S:R, > 0 by equation 122. Where n=2; for k=4, we have

(SR SR,

For a Jacobi ellipsoid, we have always Fr=0 by equation 123; hence B4 is arbitrary.

But for k=5, 6, 7, 8, we should have 85 =8¢=87=8s= 0 since Fi # 0 in general. It can be
 shown that this B does not produce any new equilibrium figure, since a figure with
L= B1£oMN, is the same figure displaced by e= 8:/(h:1RY) along the x-axis, and a figure with
{=BsloMsN, is the same figure obtained by rotating through an angle 86 around the x-axis,
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_ 3Thh
Be= 4.7750380(1& Rz)

The question now arises whether we can have

where

RSk RiS:
2n+1 3

=0  (k=5,6,...).

If one of sich relations holds, then there is an equilibrium figure in the vicinity of an ellipsoidal
equilibrium figure, which is called the ellipsoid of bifurcation.
Poincaré called the expression

_ ReSx  RiSi_

T 2n+1 2n+1 (131)
the coefficient of stability (Poincaré, 1885 and 1902). It can be shown that Ri/Ry should not
always vary in the same sense in order to give an equilibrium figure. Since four among the
eight forms of Ry are divisible by R;= Vp2®—a? and since Rx/R; keeps the same sign while
p? varies from+ to a2, it can be shown also that there exists one and only one root of equa-
tion 131 with m=1 for the four forms without the factor Vp?— a2 For example, we take
n=2 and Ry= V(p?—b?) (p?—c?). Now R, is not divisible by R;. Hence

RsS: RiS

5 3 0

has one and only one root of p?. This is a Jacobi ellipsoid.

EQUILIBRIUM FIGURES DERIVED FROM MACLAURIN SPHEROIDS

Our conditions are now

R:S: R
O 132)
In this case, Lamé functions are reduced to spherical functions:
. dnto(l+s2)»
Ri=F(is) =h(1 +s2)p/z,._..&.(s_;:;§._)_,
(133)
- dntp(] — f2)n
My=F(t) =h(1— 2)P2- d(tn+p ) i Nk”z(i);pd”
where
2o 2
§/= t,an ¢’ t= ‘Zz_l;29 t=1is.

In order that Rk not be divisible by Ry, that is, by s, we should have n+p even. Taken to be
even; then p should be even, and 0 < p < n. For each value of p, we have two solutions

375-031 O~ T1 -7
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| M=F(t)=X3, Nix= cos pep,
and
Me=X2  Np=sin pe.

One of the two figures represented by these two solutions is obtained by rotating the other.
For p=0, we have

dr(l—i2)» il
A e 034

Quantity { becomes zero for n values of u. The figure is symmetrical with respect to the yz-
plane, and { vanishes and changes sign on the corresponding parallels. Neither t=0 nor
t==1 is the root; this is a zonal figure.

For p=n, we have

nf2 ’dZn(l - 32)

£ - " .
Z—BXﬁ-cosngo, Xr=hy(1—¢%) T (=) (135)

and { becomes zero on p meridian sections and on n-p parallels. This is a tesseral figure.
For a general value of p, :

£= X2 cos pp, (136)

and  becomes zero on p meridian sections and on n-p parallels. This is a tesseral figure.

/ \
/
(
Y
\ /AW y

\

\ / 6
. -
ot I TESSERAL
ZONAL SECTORIAL

\' FLUTED (plateau experiment)
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We obtain ellipsoidal equilibrium figures in the vicinity of a Maclaurin spheroid by
taking

Re=V({p*=t)(p*—¢), Ri=p’—a;, Rs=p*—a,
where oy and oz are the roots of

1 1 1

a—a?® a—b* a—c?

2

and a% > oy > b2 > ap >c? For Ry= R4, n=2, p=n, we have R:8:/3=R.S./5, b=c; this
is both a Maclaurin spheroid and a Jacobi ellipsoid; hence it is the bifurcation figure. For
Ri=Rs, we obtain the same figure rotated through m/4. For Rx=R; we have n=2, p=0;
this is also a spheroid —the limiting Maclaurin spheroid. '

Now
ez _a’—c* 1
1—e? p*—a? s?

f2=

For f— 0, we have p— ®, s— ; this is a sphere. As f > 0 increases, the ellipticity of the
meridian section increases. The first figure we meet for bifurcation can be shown to be the
bifurcation figure with Jacobi ellipsoid. In fact, we can show that

R),Sl > RpSp > Rp’Sp’

3 T2ntl 2ni1l TP <P
and | (137)
RPSP RkSk ’
I+l am 1  ormsm

Thus R:S:/(2n+1) decreases as the ellipticity of the meridian sections increases (Véronnet,
1920).

EQUILIBRIUM FIGURES DERIVED FROM JACOBI ELLIPSOIDS

Such figures must satisfy the two conditions

RS: RiSi  RdS: RS
3 o1 5 o+l (138)

~and n>2, k> 8. To satisfy these relations, neither Rx/R; nor Ri/R, should always vary in
the same sense. Consider n=even and take the first class. Then Rx=f(p?) and all roots of
the polynomial f(p2?) are real and contained between a? and c¢%. Let o be the largest root,
and f(p?) = (p?—a)(p?—a) . . .. Since Ry= V(p®>—b?) (p®>—c?), we have

(&) -f=pi=s

R, —m‘gm pi—aw)? .. ., ©>p?>a?>b%>c2

To satisfy our conditions, all roots & should be contained between b? and c2. By Klein-Stieltjes™
theorem, there is one and only one polynomial among k+ 1 polynomials of order n=2k such
that all its roots are contained between b? and c2. Hence there is one and only one ellipsoid
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of bifurcation for any value of n; that is, of class I for n even and of class II of the

form R= Vp*—cZ%[f(p?)] for n odd.

For n=2, we have found the bifurcation ellipsoid at the junction with a Maclaurin

Spheroid. 7
For n=3 we have Rx= Vp?—c? (p>—a), b > a>c% We have

£—_ , X2 y? 22
fn_ez(a—a2+a—b2+a-—c2 1)'

This is a pear-shaped figure (Poincaré, 1885a, 1902a; Liapounov, 1884).
— X

Darwin (1902) and Humbert (1918b) made the numerical computation. Let the three axes of
the bifurcation Jacobi ellipsoid be 4, B, and C, and put ABC=1; then a=0.57453,
A|C=0.3451, B/C=0.4323.

For n=4, we have

Ro=f(p*)=(p*—au) (p?—0z), b*>a1>a>c?,
and

{=e(p®—a) (0> —a1) (2 —ou) (p* — ) (u? — ) (V2 —0z)

., x2 y2 z2 _ ) ( xz y2 zz _ 1).
=€ (al—a2+a1—b2+a1—-c2 1 0[2"'(12+a2—“b2+a2“'c2 ’
AlC =0.2575, BIC= 0.2970, o;=0.1142, and a2=0.7324.

The figures for n=3, 4 were computed by Liapounov and Humbert. The figures for n=>5, 6
were computed by Humbert (1915, 1915a, 1916, 1917, 1918, 1918a, 1918b, 1919), referring to
new recurrence formulas for computing Lamé functions of higher order.
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W
v

__{:_x _ __(_’_x

For n=5 we take R= V(p>—¢?) (p*— oy) (p®—0z), with ay =0.4539, a,=10.6545.
We obtain 4/C=10.1678, B/C =0.1810.

For n=6 we take R= (p%— ) (p®— o) (p*> — ats) with o; =0.080, o, =0.423, o3 =0.869.
We obtain 4/C=0.140, B/C=0.148.

We thus see the ellipsoid of bifurcation becomes more and more elongated as we proceed
to a higher value of n. Poincaré, from his analytic expression in the form of the series of
Lamé functions, considered the pear-shaped figure to be stable, but Liapounov working inde-
pendently proved it to be unstable. The complete works of Liapounov are described in
chapter VI. .

Appel (1910, 1913, and 1919) transformed the problem to the solution of an integral equation
of Fredholm’s type and proved the existence of the solution. Rotating figures due to surface
tension were discussed by Globa-Mikhailenko (1916, 1919) and Charrueau (1926).

DARWIN'S ANALYSIS

Darwin (1901, 1902, 1903, 1910) denoted the three roots of

x2 yz Z2 _
a2+u2+b2+ u2+c2+u2 1
by
1— B cos 2¢
ui=r%2, ui=ku?, ui=Fkt TB—-—,
where
oz=p=(, +lzpu=-—1, 2r=¢p =0,

wzyt>—a?>ul>—b2>ul>—c?,
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and
1+ 8
1-8

a?=—}? bi=—f2, c2=0.

The Cartesian coordinates are written

A 2o

y2
= (=1 (p?=1) sin’ o,

2
Z e 21__39”&.
N Wy
Corresponding to spherical functions P;, Q; Darwin wrote 1}, @7, for both x and v, and
corresponding to spherical functions Z‘o’;sga he put@ ;, $;. When k is imaginary, they become
respectively P, Qf, C§, S§. Table I shows eight classes.

TABLE I. — Eight Classes as Distinguished by Darwin

Class i s Cosine
or sine
0 or EEC even even cos
AB or EES even even sin
A 00C odd odd cos
B 008 odd odd cos
C QEC odd even cos
ABC OES odd even sin
CA EOC even odd cos
CB EOS even odd sin

Let v=wv, be the surface of the ellipsoid; then the potential is expressed as

V=T 051 (=120 ) BRICOEI WEie).
o=t G- D (1R ) PR i W ite).
The distorted ellipsoid is written
Y L E i (Wi

kz( . 1+B) k2(v3—1) k23
VO—I—__.—ﬁ-



£

THEORY OF POINCARE 95

The stability coefficient of Poincaré is written

P10 1)
g=1 —ECPIRT
B b (500 1(v0)

By such laborious computation, Darwin concluded after Poincaré that the pear-shaped
figure was stable. But in his development, he missed a term in his expansion which exceeded

numerically the preceding term. Actually the pear-shaped figure is unstable, as was proved
by Liapounov.
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CHAPTER V

Theory of Jeans

METHOD OF JEANS

Jeans at first considered the stability of equilibrium figures of a cylinder rotating around
its axis (Jeans, 1902). He proved that the two-dimensional analog of the pear-shaped figure is
unstable, in opposition to Poincaré’s conclusion for three-dimensional figures. He then
studied three-dimensional figures without heeding the convergence of the expression (Jeans,

1915, 1916, 1919).
Take the reference ellipsoid as

2 .2 2
x2 yr z
o4 S=1]
a? b% 2
and consider
x2 y2 52

flx, 9,2, M) = az+)\+b2+}\—r62+}\_1=0'

The potential at a point (x, ¥, z) because of this solid ellipsoid is expressed by
Ve=fA Y(N)f(x, ¥, 25 N)dA, Vi=f0 YN F(x, ¥, z3 N)dA,

where A is the root of f(x, v, z; A) =0 and

w(x)=—mAb°”, A=V@ TN BTN (E@FN).

(139)

(140)

141)

Suppose that f(x, ¥, z; ) =0 is distorted to F (x, v, z; ) =0. Then under what condition

can the potential be represented by the form

Ve=Jm $F (x, y, 25 M), Visz BOOF (s, 5,5 N,
N 0

PRECEDING PAGE BLANK NOT FILME™

(142)
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where the lower limit of the integral A is the root of F (x, ¥, z; A\) =07 At all points in space
F should satisfy V 2V.=0, V*V;=—4mp, or

daFa\
V2 ,= f $(NV2FdA—P(A) zaxax

vy, = f " W(N)V 2FdA.
o .

If F satisfies
A
f sV Far+ ) SR 4r, (143)
0 ox
at all points in space, and if at A= we have
AFaA :
b 3L, (144)
then equation 143 reduces at A= to
f " WAV 2Fd\=—4ap. (145)
0

If F satisfies equations 143 and 144, then eqliation 145 is also satisfied at all points in space.
Subtracting, we obtain

[T vvrrar—yon L, (146)

Hence V*V.=0, V2V;=—4mp are satisfied; A is determined by F=0. With

oF oFa\
b Tl
drdx

(OF\?
A 2(5}) _
[ vovran—pon =5 = —dmp. (147)
X

equation 143 is written in alternative form

A solution of this equation such that the second terms vanishes at infinity defines the boundary
of a solid whose potential is written in the form of equation 142. Certainly an ellipsoid F=f
satisfies this condition:

=)

f VOV Hah— () =55 =~ amp,
oA

is identically satisfied by the relation
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3 (g—f )2 g{ (148)

To obtain a more general solution, we put F = f~+¢;then the condition for ¢, with 4 =at+ A,
etc., becomes

2 (+0) [Lwoovisan=un [o(320+22)+ 3 (2] ] a9

Qur problem is to solve this equation, Jeans put ¢ =u+ fv and obtained the following
equations for z and v:

f:w(k)vz(u+fv)d)\+4t[;()\)v=0, - 150)
sato [(B55 R+ (S5 R) 2 Govviy) o s

Consider equation 150 first. Note that we must have v=0when A=0. Take the boundary
of the distorted ellipsoid to be

+b2+—-—1+¢x 0=0; (152)

then we should have ¢r-o=u)_o since v=0 for A=0. From substituting equation 141 for
P(\), we obtain

N[ ge " ( x 9y )]dﬂ _
fo [v u+ fV%+4 2A6x+a}\ =0, (153)

where N\’ is the value of \ satisfying f+ ¢ =0. The most general way of solving this equation .
is to put

. . %3, dv\_ 00
Vu+va+4(EA +— ) AaA’ (154)

where o is any function of %, v, z, A, that vanishes for A=\’ and also for A=0. Expand »in
powers of f:

v=w+fw' +Lw" . . A, (155)

substitute on the left-hand side of equation 154; and equate the coefficients of successive
powers of f. '

x 0w Q@ ——72 ov
(ZA )” Vi Aa)\’

dw' | dw 1
4 Xow —— 12
(EA py + 8A> 2V w, , (156)
x Juw™ aw(") 1 o,
- = — (n-1).
(ZA dx 6)\ ) n+1 Viw
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The indeterminate function 6 should be chosen so that

g—i(H )[w 260"+ . .+ (1) e+ ], 157)

Thus we obtain the solution v of equation 155 by solving equation 156 so that w=w' ="
=)=, =0 for A=0, with 8 given by equatlon 157.
Next we turn to equation 151 and write

=% = 3 =\:
E - A ] n Bs C C’ A )‘, (158)
then in the new coordinates with f=—u/(1+v), we obtain

() Zalag () |- 19

This equation gives /(1 +v). We know v; hence we obtain « and the unknown quantity ¢ and
hence F.

Now Jeans expanded u/(1+v) in powers of a parameter e:

u
- = 2
1 v——egl—l-e g2+ . ...

Substituting this expansion in equation 159 and equating successive powers of e give
981 _ g2 _ (agl) dgz__ 1 ( agla_gz)
oA 0, 2N 4«2/12 A 2A2 0& a¢ )’

Put g1=P(£, 1, {), and write d P[0 £ =Py, etc., and A=1/a2—1/4, etc. Then,

g2=—(1/4) (AP} +BP}+CP})+Q(£, 1, 0),
g3=(1/8)(A2P§P§§+. . . +2BCPyPPri+. . .)—‘(1/2)(APgQg+. . L)FRE M D,

Also, put u=eu;+eu+. .. ,v=evy+ews+. . ., w=ewi+e2w:+. . .; then we see
that uy=g1 =P, us=go +v1g1, us=gs + 0182+ v281, . . .; w1=—DP[4, w.=D?*P%[64— DQ/4,
.; and
— 1
w{m= cH =Dr+1P,

[(n+1)1]24n+1

where
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Write ¢ =ed,+e2da+ .; thus,
b5 =uy+ fw+ fPw;+
1
=P—( f/4)DP+ (14)?D*P— (o (f14)*D°P+ .
¢)2 = Ug +f'l)2
=0 DP* +f( p:pr—1 DQ)+ﬂ( e DS Dzo)
d=¢1+ ¢+ (160)
On the boundary A=0, we have
bo=ePo+e2Qo+ . . . . (161)

This value of ¢o can represent a general distortion of the fundamental ellipsoid. Jeans took

a distorted ellipsoid to be of the form

+‘Z2+—-——1+6P0+e200+ =0 (162)
and the potential to be
. f+ €¢1
Vi= wpabcL dA, (163)
¢ =P—31fDP+1(3f)D*P . .
Put
e dh _
[

In order that equation 162 be an equilibrium figure, Vi+

surface.
For e=0, we have

Ja— w? _f J .___“’i._______q
4" 2apabe a?’ 5 2mpabe b2’
with
ol 1.1
9—2(1 2wp>/[abc(a2+b2
For e # 0, we take '
wibid)\=0P0

w?(x2+y2)/2 should be the free

s (164)

(165)
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instead, where V2P;=0. In order to obtain a new bifurcation figure, we put

2 2 2
P=t(agrtprty),  Po=(a BB Lty Sa).

(12
Then we obtain the condition

a B Yy
22 <02+C3>'ﬁcs‘ﬁcz—f’ﬁ’

3

__2_(1 63+ bz (3(:3"‘01) ~a 5 61=0a23b4,

' 166)
3a Y L (
—gar T —z%cl—l-z-c—z (3C2+c1)~—0w,
j Ad)\ ﬁ *ANd\ | v )\dA+K dA_e_
2q? 2b2 o AB  2¢? jo AAC AA a?®’
where
®  AdA ® AdA ® AdA

c1—=

o AABC’ *T ), A4:c° T ), M2B’
From equation 166 we obtain, at first,

E+ﬁ+%=m

which is the condition that Py should be harmonic. Next we obtain

1.1
b2+ )(cwz—i—clcs-i—?)czc;;)

a2b2c2( 3+
[cl(b24-c2)+—c2(3a24-c2)4—c3(3a24-b2)]4-(-12) —o0. (67

From equation 165 we obtain

1 1,3
I
“Ja—Jst3Jc

The ratio a:b: ¢ for the bifurcafion figure is obtained from equation 167 with this value of 6.

" Jeans then proceeded to prove the instability of a pear-shaped figure by computing
the terms up to 3, without heeding the convergence of the expansion. According to H. F. Baker
(1920, 1926), the convergence of series expansions similar to jeans’ has been proved by
Liapounov, and Jeans’ series consists of terms in each of which he employed only a few first
terms of the infinite series expansion in Lamé functions.

OTHER EQUILIBRIUM FIGURES

Jeans considered also tidally distorted masses and the problem of double stars after
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Darwin 1910 (see also Glauert, 1915; Walton, 1914) and extended the study of the equilibrium
figures of compressible fluid after Roche (Jeans, 1917, 1917a, 1919 (see also Lyttleton, 1953).

Problems of Saturn’s rings as a liquid mass are treated by Kowalewski (1888); Poincaré
(1885, 1885a); Levi-Civita (1908, 1912); Viterbi (1909, 1910); Tisserand (1880, 1889); and
Klumpke (1895).

BIBLIOGRAPHY

BAkER, H. F.: Proc. Cambridge Phil. Soc., vol. 20, 1920, p. 198.
BAKER, H. F.: Proc. Cambridge Phil. Soc., vol. 23, 1926, p. 1.
DARWIN, G. H.: Scientific Papers, vol. IIL. Figures of Equilibrium of Rotating Liquid and Geophysical Investigations. .
Cambridge Univ. Press, 1910. .
GLAUERT, H.: Monthly Notices R. A. 8., vol. 75, 1915, p. 629.
JEAns, J. H.: Phil. Trans., vol. 200 A, 1902, p. 67.
JEANS, J. H.: Phil. Trans., vol. 215 A, 1915, p. 27.
JEANS, J. H.: Phil. Trans., vol. 217 A, 1916, p. 1.
JEANS, J. H.: Phil. Trans., vol. 218 A, 1917, p. 157.
] JEANS',"J. H—“M‘einoirgﬁ()y Astr. Soc., vol. 62,1917a, p. 1.
JEANS, J. H.: Problems of Cosmogony and Stellar Dynamics. Cambridge Univ. Press, 1919.
. KLUMPKE, D.: Aun. Obs. Paris, Mém., vol. 21, 1895.
KOWALEWSKI, S.: Astr. Nachr., vol. 111, 1888, p. 37.
Levi-C1viTa, T.: Atti Ist. Veneto Sci. Lett. Arti, vol. 68-2, 1908, p. 557.
LEvi-C1viTa, T.: Rendiconti Cir. Mat. Palermo, vol. 33, 1912, p. 1.
LYTTLETON, R. A.: Stability of Rotating Liquid Mass. Cambridge Univ. Press, 1953.
PoIncARE, H.: C. R. Acad. Sci. Paris, vol. 100, 1885, p. 346.
POINCARE, H.: Bull. Astr., vol. 2, 1885a, p. 109.
T1sSERAND, F.: Ann. Obs. Astr. Toulouse, vol. 1, 1880.
TISSERAND, F.: Bull. Astr., vol. 6, 1889, pp. 383 and 417.
VITERBI, A.: Atti Ist. Veneto Seci. Lett. Arti, vol. 69-2, 1909, p. 1129.
VITERBI, A.: Atti Ist. Veneto Sci. Lett. Arti, vol. 70-2, 1910, p. 1311.
WaLToN, E, T. S.: Phil. Mag., ser. 6, vol. 28, p. 271.






CHAPTER VI

Theory of Liapounov

THE FUNCTIONAL EQUATION

The problem, how to determine equilibrium figures in the vicinity of the known ellip-
soidal figures, is called T'schebyscheff’s problem. Liapounov (1884, French translation 1904,
and 1959) solved the problem and found the pear-shaped figure unstable, whereas Poincaré
(1885) found it stable. So Liapounov further discussed the problem in great detail and pub-
lished several voluminous papers entitled “Sur les figures d’équilibre peu différentes des
ellipsoides d’une masse liquide homogéne douée d’un mouvement de rotation,” in the Mém.
Acad. Sci. St. Pétersbourg, part I; 1906, pp. 1-225; part II, 1909, pp. 1-202; part III, 1912
pp. 1-229; part IV, 1914, pp. 1-112 (also 1905, 1908, 19093., 1916 1959).

He took as the three axes of the ellipsoid Vp+1, Vp+gq, Vp, (q< 1), so that the

surface is represented by
x=Vp+1isinfcosy, y=Vp+gqsin 9 sin ¥, z=Vpcos 0. (168)
A distorted figure is represented by
= \/p—+——§.—T—T sin@cos ¥, y=Vp+étgqsinbsiny, z= Vp+écosf.  (169)
The equation of the free surface is, with w3/2=0,,

U+ (Q¢+m) (p+cos? Y+ q sin? Y+ £) sin? = constant, (170)

where 7 is a function of a certain parameter a, and n=0 for =0, that is, for the original
ellipsoid. The volume element dr is expressed by

_H(p+¢£,60,9)
dr 72A(p+§) dédo,

where
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p(p+q) sin? 0 cos? Y+ p(p+1) sin? @ sin? ¢
+(p+1)(p+q) cos? 0=H(p, 0, ¥), (171)

Vpp+1)p+q)=A(p), sin 0d0d{= do-.

With r=D(p+ &, p+¢'), the distance between two points (p+ &, 6. §) and (p+ ¢, 8', '),
we have

-1 (¢ Hp+E.0,9) .,
U""zwfdo' f—p rA(p+§/) dg

=P(p+¢£)+S,
where

=1 (4o [f Hip, 6. %)
L, [“H(p+E,0,4')
s=32 )0 || R

d¢’;

7®@ (p) is the potential of an ellipsoid with three axes Vp+1, Vp+¢, VP and it is known
that

dt
Ae)”

- “(1—PFL 2 6 cos? =P in? 6 sin® 4—2 2>
D(p) A(p)fp(l ;11 Sin 0 cos? ¢ H_qsm 0 sin? 4 ; Cos 0

So far as |{; < p, we can develop ®(p-+{) in powers of {:
) 4 1 1
P+ =2(p)+ P (P){+7 5" (P)+ . . ..

Denote the angle between (0, ) and (8', ¥') by ¢; then, so far as

|§]< [
cre<l, I‘P =4 2pV2(1—cos ¢) &

we can develop S(€) uniformly for all values of £, 0', ¢’ in the form

S(e)=S8:e+S2¢2+ . . .,

or, putting e=1,
S=84+S+.. .,
where

g [ At 09y
2] 97 || Dttt pterito T =50 9

S(e)= lii'n S(u, €).
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Hence »
U=U0+U1+U2+ « a ey

U0=®(P),

U= BD()E+S, (n>0),

where

1.,
Sn=gplim 3 iG+1)!

i+j=n—1

gi an"j H(l), elq ¢I)§j+1' 1 __1__ n n
(auiauj A(w)D(u, v) do ) =p niq)( ().

For n=1, our expression [d®(u, p)/du]{ should be added on the right-hand side. Let

® dt .
80 [ aram

* ds _
86) | G am

A(p)ftA(t) N;

then,

oP(u, p)
Ju

—L sin? 6 cos? yy— M sin? 6 sin? y—N cos? 0
for u < p. The condition necessary for the original ellipsoid to be an equilibrium figure is

(p+1)(L—Qo)=(p+q) (M—Qo)=pN. (172)

‘Let

: 1
Ap)=A.  H(p.0.9)=H, H(p.0',y")=H', fm(t) I

and D(p, p)=D, the distance between two points (p, ¥, 8) and (p, ¥', 8); then,

30 (u,p) __ 2

R=% N, » < RH—Qq sin” 6,

U,= ZWAJHng- (iRH-FQosinzO).

Substitute these in equation 170 and note that, the ellipsoid being an equilibrium figure, we
have

Uo+ Qo(p+cos? §p+ g sin? §r) sin® #= constant.

Then we obtain the fundamental functional equation:



108 THEORIES OF EQUILIBRIUM FIGURES OF A ROTATING HOMOGENEOUS FLUID MASS

RH —-—J-Eg—d(r——W-i-constdnt
W=m(p+cos? f+qsin? Y+{) sin? +U,+Us+ . . . . (174)

The volume should be constant, and the center of mass of the new figure should be at the
origin; the principal axes of inertia should be on the x- and y-axes. These conditions are
expressed by

YH(p+E,0,9) .. ¢ H(p+¢,0,9) .
fdcrf Alp &) dé=0, fcos 0 do VoI orEte) dé=0,

f sin? 8 sin 20do f ‘Eiﬁi\/%—%——”‘l’)d§=o. 175)
0 pPTes

The latter two equations can be written

fHC cos Odo=0, ng sin? 6 cos 2¢ido=0.

LAME FUNCTIONS
Put

V1—p? VI—v2="V1—gq sin 6 cos ¢,
V1—pu2 VVZ_—qi:—‘_\/,q(l—q) sin 0 sin ¥,

JIES \/(; cos 0.

Lamé functions are the solutions in the form of integral polynomials in x, Vx2—1, Vx2—gq of
V(x2—1)(x2—q) —[ Vi(x2—1)(x2—¢q —]-i—[ﬁ n(n-+ Dx2]y=0.

For each value of 8 such as Br,0 > Bx,1>. . . > Bn,2x, there corresponds a solution En,o(x),
o o Enan(x)
s=0 (mod. 4) : Eps(x)=P
s=1(mod. 4) : En.(x) =PVaZ—qg,
s=2(mod. 4) : Ens(x) =PVx2—1,
s=3 (mod. 4) : Ens(x) =PVa?—1 Vx2—g,
where
P=cox™—cyxm2+., . . (m=n,n—1,n—2).
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For example:

n=0:E.w(x)=co;

n=1:Ep(x)=cox, Eu(x)=coVa®i—q, Ep(x)=coVai—1;

n=2:Es(x)=co(x2—k'), En(x)=coxVai—gq, Eu(x)=coxVai—1
Es(x)=coVal—1 ViT—q, Ea(x)=co(x2— k"),

where £”> k' are the roots of 3k2—2(1+¢)k+q=0.
Lamé functions of the second kind are

dx .
[Enx(x)]z v (xz_l)(xz—'Q)

Fusw)= @+ DE,u(a) [

Write
Ens( V_u) =Ens(u), Fns(u) = 2n+1 Ens(u) f“’ dy M (176)
2 u [Eps(u)]®* Vu(u+1)(u+q)
then equation 173 is written
R=’l" EioFio. (177)

3
Eliminating ¢ from equation 172, we obtain the relation between p and g for a Jacobi ellipsoid

(p+1)(p+q)(M—L)= (1—gq)pN,

or
» _dt J“ dt
—(p+1) (p+ -0,
N0 P+Det+a) | D e+0b0
or
1
% E1oF10— 5 ExaFa3=0. (178)

We have relations of the form

[Ens(ﬂ)Ens(V)]Z — Enans,
(p+12) (p+v%) %777 A
A=VppFDpFa)’ anm
'}'ns'—‘:f [Ens(,ua)Ens(V)]zdo';
Ens(u)Ens(v'), , 4w <
D(u, v) do -2n+1Ens(ll‘:)Fns(v)Ens(lL)Ens(V), (u\v) —_
i a

.
- n+1 E"s(v) Flls(u)Ens(cu')Ens(V) ’ (u = ).
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For g— 1, %> u?, we have, according as s=2k or s=2k—1: lim E,s(p) = Pnx(cos 6),
limE, 2 (v) =cos ks, or, lim Ey ox—1(v) =sin k&, lim Eng(u) =Pys(u), lim Fpe(u) = Qui(u),
where

__(VaFD)r | drht )
P,,,k(u)—2_4_ T 2n[ dan+F J 2=Va
2n+1 du
Que(u) ==——%— P""(u)f Poe(@) 12w+ 1)V
Note that
1 de-yr
P =g
n k(x)—'( \ )L & P"(x)

BIFURCATION FIGURES

From equation 174 we proceed by successive approximations for calculating the unknown
quantity {. In our first approximation, we consider

RH——JHZ“ -z, (180)

Whe‘ re
lt (p/z) f : EIO'IO,

and Z is known on the surface. Multiply by Exs () Ens (v) do and integrate over the surface.
From equation 179a, we obtain

T j HaE (1) Eng (v) do=; ] ZE (1) Ens (v) do, (181)

Trns= (1/3) ExoF10— 57 EnsFus. (182)

1
2n+1
For the values of n, s satisfying Tus=0, we have [ ZEs(u)Ews(v)do=0; n=1, s=0is one

of such cases. For n=2, s=3, we have the Jacobi ellipsoid, and T>3=0. For such special
values of m, r which make Tny=0, we have [ ZEu-(w)En(v)do=0, and

| e (0 B 0 dor (183)
can take an arbitrary value, while for any other pair of values n, s, ‘

IHZE,,S([L)Ens(V)d(T (184)
takes a definite value; thus z is determined.

Take a very small parameter o; for a=0 the figure is supposed to reduce to the ellip-
soid from which we start. Assume that
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1z le-gl . |
s |<i, PRV i) g (185) |

where [, g are constants, which can be taken as small as we please as long as « is sufficiently
small (the left-hand sides vanish for a=1). It is proved after a long, laborious computation
that g/{ is a fixed number. _

Now our problem is to see whether there exists a new equilibrium figure slightly different
from the Maclaurin or the Jacobi ellipsoids under the conditions of equation 185. Denote the
ellipsoid from which we start by E,. Let the new figure be of the same volume, its center of
mass be at the origin, and its principal axes of inertia coincide with Eo; that is, equations 175
are satisfied. If the center of mass is at the origin, we have

¢t _Hp+é0,9) . 186
f""s bdo | ToTETD (pTETg) #=0. s

If the principal axes of inertia coincide with the coordinate axes, we have

f sin? 6 sin 2ydo L CH—(”;“/L——%’—@d&O (187)

for the Jacobi ellipsoid, and
fHCPm,k (cos 6) sin kpdo =0,
or ' (188)
fHC«Em,Zk—l(M)Em,Zk—l(V)d0'=0 (k>0) _
for the Maclaurin spheroid. Expanding the integrals in equatign 175 in powers of {, we obtain
fHCd0'=Io, ng cos Odo=1,, fH{ sin? 0 sin 2ydo=1,, (189)
or

fH;Ewm>Ew(v)do=L, f Hss (1) s (»)do =1, (190)

where Iy, I, Iz contain terms of degree higher than 2 with regard to {.
Suppose that the solution of the fundamental equation 174 is

1
€=Z+ﬁ2 amrEmr(I-L)Emr(V), (191)

where an, are suitably chosen constants, and z satisfies

szEmr(I.L)Emr(V)dO'ZO. )
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Suppose further that Ty, =0. For such pairs of m, r, we see that the solution z of equation 174
satisfies

Lo+ML
p(p+q)’

lz| <

where Lo, M, L are sufficiently small constants, tending to 0 with 2, or with a. We seek for
the values of ams/[ that do not tend to zero with a, except @10, @23; note that Too, T11, I's2 cannot

become zero.
Liapounov at first proved the theorem that an equilibrium figure which can be derived

from an ellipsoid has at least two symmetry planes.

SUCCESSIVE APPROXIMATIONS

We start from E, with Q¢ and consider an ellipsoid E with Qo+ 7. We seek equilibrium
figures with the same volume as F, the same center of mass, and the same principal axes
of inertia. The conditions are given in equations 186, 187, and 188, But under this condition
we cannot have

fHCEm,Zk(/-L)Em,zk(V)dO'=O.
Write
J’Hwin,zk(M)Etlz,zk(V)d0=’ya,

. (192)
7= [ B (1) B (0) 12
This gives our parameter a.
Then,
HC——_ aEm,Zk(M)Em,zk(V) +HZ, (193)
fHZEm,zk(lL)Em,2k(V)d0'=0- (194)
The fundamental equation 174 can be written
1 (H'Z'do’ _
RH o —D——Z+constant,
A
Z=§ W_ Ole,zlcEm,2k(p‘)E"l,Zl\‘(v) s (195)
W=U2+U3+ PRI

It can be proved that

aEm,zk(M)Em,2k(V)
H

can be taken as a first approximation to £.
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If we stop at the first-order approximation with regard to ¢, the equilibrium figure we seek '.

is

2 2 2
pi - +py+q +:7= 1 +%Em,zk(u)Em,2k(v); (196)

En2e(p)Em,21(v) is of degree m with regard to sin 6 cos W, sin 0 sin s, cos 8. It is recalled that
the expansions employed by Jeans are of such nature as Baker remarked.

The equilibrium figures are referred to the ellipsoid E in the above. Now we must refer
them to the original ellipsoid Eo. At first the volumes of E and E, should be equal; that is,

(1+€)3=P0(P0+ 1) (po+go)

plotDp+a) (197) -

We have further

Vpo+ 1+ sin 6 cos Yo=V1+¢ Vp+1+sin 6 cos ¥,
Vpo~+ g+ & sin 6 sin Yo = V1+€ Vp+g-+{ sin @ sin , (198)
Vpe+ Lo cos Bo=V1+e Vp-+{ cos 6.

We have supposed that, as « and 7 tend to zero, the equilibrium figure tends to Eo; also €
tends to zero with & and 7.

The important part of Liapounov’s work is the proof of the convergence of the process of
successive approximations.

Put
(=Y Lot ={uoa+loum +. . . (199)

where { is a function of 6 and ¢. Put |{s| < pls. Liapounov proved the convergence of Z/.sa'n®
for sufficiently small |«| and |n|. Put [&rs'—&rs| < 2pgrsV2(1 —cos ¢). He also proved the

- convergence of Zgra™. Then he constructed a majorant series for |U—Uj| in the form of
the expansion in powers of / and g of the function

2(p_1~1)[(1+1)3_1+ 2(1+0)® 1]’

(=0 T VA-D*rg 1l

where
l=z lrslalrl'f)'s, ‘ g:Egrs'Ollrl'Y)ls, l+g< 1.

He also constructed majorant series for W and

W —-w
2p V2(1—cos ¢)

2

and proved the convergence of the series he employed.

Now we compare the parameters p, g of an ellipsoid satisfying T, 20=0(m— k=even)
to those parameters for E,, by taking { as the solution of equation 174 with the conditions
of equations 186, 187, and 188. From the fundamental equation, together with T, 2x=0,
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we obtain
J‘ WEm,Zk(M)Em,Zk(V)dU'=0- (200)
For the moment, let

j WEn st (1) B, e (v) dor = vA;

then we have

= [W— AE ., 2(p) Em,21(v) ] + constant. (201)

RHC__fH;da A

Write equation 199 in the form

(=St ad W=SWi
n=1 n=1
then equation 201 takes the form

RH{, — #,[ il Cl")da. =— (Wa—AnEn,21:{t)Em,2x:(v)) + constant,

1
An=; f W nEm, 20 () Em,ox(v)do, (202)
and the conditions are

f HCnEm(’,u)Ew(V)dO': O,

f HCnE23([.L)E23(V)dO'= O,

(203)
f_ HEnEm, ox-1() Em, 2k-1(v)do =0,
f H{nda'=ln.b
From Up=Un,n+Upn+1+ . . ., we obtain the expansion of W =3W,, where
Wi=mn(p+ cos? Y+ g sin? ) sin2 4,
Wa=mts sin? 0+ Us, ,
(204)

o

Wu=mnLn-1 sin? 0+ Uz, a+Us,a+ . . . +Un .

W is a function of 8, {5; W; contains {;, s < i. If we compute {;, s < i, successively, we obtain
Wi as a function of 8, ¥. Similarly, I; contains {;, s < i, I;=0. Hence we can compute {;,
{2, . . . successively from

1 H'(/ do'

=/ -+ constant,
(205)

z=% [W o — AuEm, 2 (1) Emor () ].

This equation has the form of equation 180,
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The next step is to make it satisfy

ng,,Em,gk(;L)Em,Zk(u)da'=O, (n>1).

From this equation, the parameter « is determined. In order to satisfy this equation, the
equation

fZE,s(”)E,s(v)d0=O (206)

should be satisfied by the pairs (1, 0), (2, 3), (m, 2k—1), (m, 2k) for (r, ), owing to the con-
dition Ts=0 for such pairs, which are satisfied actually. Hence {, is determined. For the
fourth pair, we know that it is satisfied by equation 202. _

After a long discussion, Liapounov proved the convergence of the series {=23{.. From
the second step, we see A= 0 from equation 200 or

> Arsarn*=0.

By the definition of ¥, in equation 204, we see that there is no nonellipsoidal equilibrium
figure starting from E, either for m=2, k=0, or for m=k=2. Thus Liapounov reached the
conclusion that, in order that there may exist a nonellipsoidal equilibrium figure differing
from E, as much as we please (where Ey may be a Maclaurin spheroid or a Jacobi ellipsoid),
it is necessary and sufficient to have

1

1
3 E10F10_'2—m—_'__i Em,2xFm,2n=0. 207)

Here m > 2, and m—¥k is even; m—k cannot be zero for a Jacobi ellipsoid. Equation 207
determines uniquely the starting ellipsoid E,.

Such an equilibrium figure has a symmetry plane perpendicular to the rotation axis and
at least one more symmetry plane through the rotation axis. If Eo is Maclaurin’s, the equilib-
rium figure is one of revolution for £=0 and has £ symmetry planes through the rotation axis
for k# 0. If E, is Jacobi’s, it has two symmetry planes through the rotation axis for m even
but only one for m odd.

Let z be the rotation axis and xz be the symmetry plane. If E, is Jacobi’s, the surface of
the equilibrium figure is represented by

—_ 2 —_— 2
v=VpFTT L sinbcos y= Vp T T T I \’/‘1_- Vi=v®
—q

. . Vg—p? Vv’—gq
y=Vp+gq sin 6 sin Vp+aqg+i 20—

z=Vp~+{cos b = \/F——Z—M‘,
q
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where Vp+1, Vp+gq, Vp are the axes of Eo, and p, q are determined by equation 207. Put
(p+ 12) (p+ )= 0Em,2k (1) Em 26 (v) + &;

then ¢ should satisfy

2w T
fo dy fo EEm, 2 () Em, 21(v) sin 6d6=0,
with o= constant for any value of a. Then there exists one and only one equilibrium figure with

the same volume as Ey such that the greater of | { | and
e
1—cos ¢

is sufficiently small; ¢ is expressed by a positive integral power series of a, and the series is
absolutely and uniformly convergent for all values of 0, ¢ as long as | a | is sufficiently small.

DERIVED FIGURES

derivable from Maclaurin spheroids. 7
A=Y Aarns.

In the equations he wrote Apw=4A4;, Ai1=B, Aj=Ci, Asra+Apn+Azia?+ Apan+ . . . =S5;
S=0 for a=n=0, so that 4,02+ A3a3+. . .+ (B+S)an+Cm3+. . .=0. At first he
proved that B 0. If all 4;=0, then there would be a solution such that n=0; that is, the

new figure would rotate with the same angular velocity, but it was proved that there are
some A; which are not zero. Suppose that A=A4,.; #0 for such a figure; then

Part II of the work by Liapounov contains the discussion in particular of the figures
n=—(A/B)a*+ . . . . If A is even, then 4/B can have two signs, but if A is odd, 4/B has

If the figure is not one of revolution, then 4> =0. For m= k=2, that is, for the junction
of Jacobi series and Maclaurin series, we have A3 # 0. A similar result also holds for m=k=3.

only one sign.
It is proved after a long series of computation that there is no pair (m, k) for which 43=0.
The result is: for £=0, the angular velocity is expressed in the transition from an ellipsoid of

revolution to an equilibrium figure of revolution in the form
n=ma+no*+ ... (m#0),

and in the transition to an equilibrium figure not of revolution in the form
m=mee?+mnat+ . .. (n#0).
This £ is developed in a positive integral power of 7 in the first case and in a positive integral

power of V7 in the second case. There is only one { in the first case; there are two values
of ¢, but with the same figure, in the second case. Thus there exists one and only one distinct

equilibrium figure for a given value of n with a fixed sign of 7 for k£ # 0; that is, 7 <0 for
m=k=2. The angular velocity decreases in passing from a Maclaurin spheroid to a Jacobi
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ellipsoid. A similar situation holds also for

m=k=3, n=""p" As>0,B>0.
In the other cases, B <0; that is, 7 has the same sign as As.

SINGULAR ELLIPSOID

Part I11 is devoted to the discussion of the figures derivable from a Jacobi ellipsoid. The
solution for p and ¢ of the equations Te3=0, Tu=Tw,2n=0 (m=3, 4, . . .) is uniquely
determined for each value of m; m=3 corresponds to a pear-shaped figure. It is proved that
T3,6<Ty8<Ts,10< « ... Liapounov then computed exactly to four decimal places.

Let

1 1 * dt .

_1 1 = di
R 3 2P o tA(E)’ Q

E1oFi0=

then T23=0 is written R —Q =0, where

mR—f' 2dz VeF1Q=( +1)f] 2'dz '
K e VoFZ VI—A(l=2) “ P o (p+22)32[1—A(1—22)]3%’
with
P q_ K__—
22’ p G k+1 A
Furthermore,
;R—ao+1(l1l\+£(l.2)\2+ .y _Q b()+ b1)\+35b2)\2+ .y A=A(p),
with

- 72 "szz —z2 uz4dz
VPR [ e, G [

— Q=0 is written Af(\) =c, with ao—bo=c, an—bn=cn,

2n+1 1 ' 3.5, .,

——z-n—b,,—%an=ln_1 (TL=1, 2, .. .)’;* lo+ l A+ 412)\'+ « .. =f()\).
Liapounov computed a., b as far as n=24, by estimating the errors of computation at each
step. Thus he computed for m=3 the values of

1
0

2

1 < A <0.362655458 {

0.362648151 {

and the values of the three axes of the ellipsoid with the same volume:
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Darwin’s value

27 28 ;
1.8856 { 52< o < 1.8856 { 97 1.885827
40 40
0.8150 { 31 <B<0.8150 { 39 0.814975
78 78
0.6506 { 74 < v <0.6506 { 77 0.650659

Similarly he computed these values for m=4.
The computation of 7', =0 is very complicated:

1 CEF_L (> _[EWEW]
Tm"‘R 2m+15ann A 8 b (P+M2)(P+V2)

Put

M= VI=p) =D, N=VI=AT=qp

_1 uivido
R=3 Eufo = 4q7r (p+u2)(p+v2)’

0= 3A ! M2N2do  do= (2 —p*)dudy
- 4mg(1—q)? Jo (p+u?)(ptv?)’ ' MN ’

and
E= (p+hi)(p+hs) ... (pth),

-__ n 1 E
b= A=) = [E AT pi B

3 . 1 1 & 1
= — T Tef? L1729 P =— - , f — :
g 4q i; hi[E'(—h:)]? 7 4q ;V(l—hi)(hi_Q)[E (—h) ] or m=2n

E= Vp+1(p+hl) oo (ptha),

®(p)=(p+ 1) (p+hr) . . . (p+hi)=VEFIE,

_2 1 @) | 1 @(p)
= 2 =) [ RO p+hi =@ (— DI p+1°

3& 1=k o, 1 1 1
S ERRCRT T 2 R B0 [0 C DT

for m=2n+1.
Then
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—g)?
Tmz(l"'g%EZ)R"}‘f _—q‘(—l‘q—)“"EZQ—KA,

(p+1)(p+q)
K=|:P+gE—f(——-—+~—l—)E]E for m=2n,
p ptl p+
=[P+g9—/( 4_4 1 >(DJ £ for m=2n+1;
p p+1l p+gq Vp+1

Tw=01is considered a function of two independent variables p and q. Then we take p as the
only independent variable by considering 7', =0 together with T3 =0.
Next, Liapounov computed

4,=1 ( d E’F EZFdJ)
2 dp A Adp)’

1 [E(m)E(»)]? d
2m+1)y) (p+up2)(p+v?)

J=

for m=2n and obtained A4; in a form which is rational in p and algebraic in g; A5 # 0 for any
value of p or g. It is shown that > 0 for the values of p, g such as Te3= T, =0, and that
As >0 for To3="T,. He used almost 100 pages to prove 45 >0 for m=3.

Let Eq be the singular ellipsoid, E» be a Jacobi ellipsoid slightly different from E, with
singular velocity Qo+ 7, and F be a nonellipsoidal figure with Qo+ 7. The differences of the
moments of inertia S —S8v, S—So, and the differences of the moments of momentum M — M+,
M —M, are negative in the order of 7. Hence M and S decrease in the transition to a pear-
shaped figure. Thus he concluded that a pear-shaped figure is unstable.

NEW FORMULAS

In Part IV, Liapounov presented a new formula, which is the starting point of his dis-
cussion on heterogeneous masses. This was published in two volumes after his death.
At first he took

x=\/m\/m4sin0cos P, J’=\/m ’\/quSiHOSinlll, z=\/:2\/;cos 9,
but later took the equations of ;1 new equilibrium figure to be
x=a\/1+_§‘ V;I—l_ sin 0 cos Y+ BVp+1,
y=aVi+ Vp+qsin 0 sin 4, (208)
z¥am 1‘/;;;0050, O=<saxl, |
where 8is a function of & that reduces to 0 with . He expanded
=3 Tsa'B%  Tro=1n

note that a=1 corresponds to the free surface, and 0 < a < 1 corresponds to one of the level
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surfaces that are similar and similarly situated with the free surface. A level surface is
defined by U+ Q(x2+ y?) = function of a, and is represented by

x'=vVu Vp+1sin 0’ cos ¢'+BVp+1
y'=Vu Vp+q sin 0’ sin ¢’
z'=Vu Vp cos ¢,

where u is a function of 8', ¥’ such that 0 <u < 1+7'.

Put
1 v Vudu
U= fd f S=——fd 'J' s
" D(a, \f ) ax) 1y D@VIFE, Va)
=Volpt Dp+q), r=D(VI+L, Va)
then
= (14 Uy 2A8.
Put, further,
QO—Q=m, 0= (p-+cos? ¥+ q sin? ¥r) §in2 9, | %f“’zd__ , f tA(t) R;
then,
(t+1)(Qo+q)

RC:;K (1+0)0+ BV1+{ sin 0 cos 1l1+ (CL+S) +f( ) »(209)

where f(a) is an indeterminate function of a. The problem is to determine the function ¢,
satisfying this equation by a suitable choice of 8 and f(a). In order that { shall not become
infinite for a=0, we should have

5O == [ e

D, 1)’
Bt g 2] Tpr - (V1+E Do =0,
f————(a)a:f (0) is finite for a=0.

The second condition fixes 8 as a positive integral power series of «, vanishing for a=0.
The first condition gives f(0); f(a) =f(1)a?+f(0) (1—a?) satisfies the third condition.
Substitute these expressions for ', f(a), B, 0 into equation 209; then equation 209 is ex-
pressed in terms of £, a, 8, ¥, and a. The solution { of equation 209 tends to zero for a=0,
whatever the value of @ between 0 and 1.

Next, expand

S= i Su
n=1
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S»(n = 2) is the coefficient of €" in the expansion of

f fmg D(a\/—du, Vi)

Expand {’ in powers of a such that
{= gl Jnatt,
the coefficients J, being functions of y= a\/i——_i-Tc. Then equation 209 is written
RE=F(1) =f(0) +5k 1+ DO+ [J(@VIFD ~J(O) —J 0)aVIFL].  @10)

Since the right-hand side is developed in positive integral powers of « and ¢ and becomes
zero for =0, equation 210 admits a unique solution

{= Z Lra”

for a sufficiently small &. Compute the coefficients successively, starting at {;. Put f(1)—f(0)=¢

J@) =10 =1 O+ 0+c ) =F (), f=m—_f—(c%;
then
1 % an 1420nén
=Xy S 211)

function ¢ is developed in powers of « and is a known function of a, 0, s, &; and {-is obtained
as an integral polynomial of a, sin @ cos ¥, cos 0. Inserting this definition of £ in equation 210,
we obtain

(= (1+0&@VIFY).

Puiting
+{=v, *[1—¢(v)]=a?
gives
v2— ® (v sin O cos Y, vsin 0 sin i, v cos ) = a2,
where @ is a uniform, analytic function of the arguments, whose development begins with the

second-degree terms in the arguments. Hence, we obtain finally from equation 208 the equa-
tion for an interior level surface of the equilibrium figure in the form

2 ‘ 2
(x—\)?2 =N ¥ 2 q)( x—X\ y )__az’ 212)

ptl p+q p Vp+1~ \/— Vp

with 8 V,p+1=A\. The lowest-degree terms in the development of ® are of the form

375-081 O -1 -8
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L

(x—A)2 y2? 22
+M +N—,
p+1 ptqg  p?

where L, M, N become zero for «=0. Or, if we neglect the terms of order higher than a2,
the equation for the surface (equation 212) is

(x A)

Q-L)y—/——+1—- M)-———+(1 N)—=a2

“This is an ellipsoid with its center at (A, 0, 0); A=0 for m even; the ellipsoid is concentric
with Eo. If m is odd, if E, is a figure of revolution, and if k(of T, x=0) > 1, then A=0.
Substituting our expansion A=Aj1a+ Aa?+ . . ., we obtain

2 2

x ¥y 22

p+1 p+gq

—a2+2 a'Zi(x, z, a).

Put a=1 for the free surface; then we obtain the equation that was given formerly:

x2 y2

p+1+p+q

=14 2 oiZ;(x, 2).

Liapounov wrote a2= [ {2do, expanded all quantities in powers of @, and determined
{ in the form

{= z Lrsa™m®.

Finally, he expressed m as a power series of « and then obtained the solution {in a convergent
power series of a.

In 1917, Liapounov solved the problem by means of spherical functions with the sup-
position that the level surfaces are homothetic. But if we consider them to be confocal, then
Lamé functions appear (Liapounov, 1903, 1904, 1925, 1927).
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CHAPTER VII

Theory of Lichtenstein

NONLINEAR INTEGRAL EQUATIONS
Integral Power Series

According to Schmidt (1908), Iglisch .1933), Hammerstein 1930), and Golomb (1934),
we call an expression

u(S)“Of] C fK(s, tiy oo t)u(t) wm(e) . . . ult,)oedsy . . . dtp,
ato + ... Ffa,=m; o =0, o =1, o=,

an integral power term of degree m in the argument function u(s), where the coefficient
Sfunction K is continuousina<s<b,a<t;<b, ..., ast,shandausZ o= . .. = a,.
The product of an integral power term of degree m and an integral power term of degree n is
an integral power term of degree m-n.

If we substitute for the argument function u(s) of an integral power term of degree n -
an integral power term of degree m in an argument function v(s), then we obtain an integral
power term of degree mn in the argument function v(s).

Denote the integral power terms of degree m in an argument function u(s) by

W,,,(S), Vm(s), Pm(s); then we have Wm(s )__:mem(s) with a constant p, and
u u u pu u _

S\ s\ . _
S )—p Wm(l)wnh w(s)=1.

Let an integral power term, in which the coefficient function is replaced by its absolute
value, be denoted by |W|n (Z), then we see that Wy (s) + W, (Z>+ e A Wn (Z>+ ..
s
= i B u
s if the series |W|o+ |W|iu+ |W |42+ . . . is convergent, where the maximum of the

absolute value of u(s), Wn, (i ), | W |m (i) is denoted respectively by &, Wi, IW]m If the argu-

is a regular convergent integral power series ( ) which represents a continuous function of

123
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ment function is replaced by an argument function smaller than the maximum of the first
argument function in its absolute value, then the series thus obtained is absolutely and
uniformly convergent. The product and the sum of two absolutely and uniformly convergent
integral power series is an absolutely and uniformly convergent integral power series.

We extend this to the case of two-argument functions. Consider

Wmn(:v)su(s)aoy(s)ﬂo f o f K(s, tuy ta, « + -y £o)u(t) a0y (82)5

. ulty)ev(t,)Pedty . . . dtp,
ptot, ... ta,=m, Bo+ ... +Bp=n,
ot+pBi=1, ce o 0ptB =1,
al?agz...zap,

where
Bu=B if oy = 0.

The number of integral power terms of degree m in u(s) and of degree n in v(s) is finite.
The product of an integral power term of degree m in u(s) and of degree n in v(s) with an
integral power term of degree m' in u(s) and of degree n' in v(s) is an integral power term
of degree m~+m' in u(s) and of degree n+n' in v(s).

With constants p, q, we have

W ) s s s
""’(pu, qv)_p qW’""(uv)’ W’""(pq>”p 1 <ll>‘

If

N o0 o0
E 2 |Wimnﬁm17n
m=0 n=0

is convergent, then the integral power series
L] o S
53 o)
m=0n=0 uv

is also convergent.

If W(s)=W,(s)+W, (2) +...and u(s)=V, (:))+V2 (z)+ . . . are both abso-
lutely and uniformly convergent such that & <k, [F]i5+[V]o%+ . . . < h, then the integral
power series in the argument function »(s) obtained by substituting such u(s) in W; (Z)
is also absolutely and uniform_ly convergent.

. s
Consider an absolutely and uniformly convergent integral power series H(S) =% <u11>

forash, v<k, where
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=] x ked s
uls)= m2=0 n§=:o pgo W (uthwg)’ 213)
#
o oo 0 s
v(s)= mgo Zo gﬂ Vmnp (wlw2w3), (214)

Wooo(s) = Voool(s) =0.

The integral power series obtained by substituting these u(s), v (s) in H(S) is absolutely
and uniformly convergent if u(s), v(s) are absolutely and uniformly convergent and if

I’f’hmnﬁwi"w%‘wé’ <h,

Ms
Ms
Ms

[{]

3
I
3
I
=1
)
|
=]

(215)

\P | g @ < .

Ms

)

n=0 p:

Me

Il

0

3
Il
o

(Cf., Niemytzki, 1933; Bratu, 1913).

Inversion

Now consider the inversion of the integral power series
Sy . & s \_
B (uv) - ,Zfo ,ZO W mn ( uv) 0, (216)

in which the series P (:v> is absolutely and uniformly convergent for & < h, ¥ <k, and

Woo(s)=0, so that <50)=0. Try to express u(s) of equation 216 as a function of v(s). An

integral power term of degree 1 in u(s) and of degree 0 in v(s) is

b

Wlo(:v)=A(s)u(s)+ f,-B(s, £u(t)d:,

or 217)
(/]
Wm(ufv)= u(s) + f C(s, t)u(t)d:.
a
There are tﬁo cases: (1) when there is no continuous function ¢(s) satisfying
o) — f C(s, D)o (r)d=0, (218)

that is, for the kernel C(s, t) there is no null-solution (which means that there is no such
solution that is not identically zero and satisfies the homogeneous integral equation); and
(2) when there are a certain number of such solutions.

The Regular Case

In the regular case when there is no null-solution of equation 218, there is one and only
one solution u(s) for a given function v(s), if the continuous functions u(ﬂ.‘s) and v(s) satisfy
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us<h', 5 <k with B <h, k' <k Then u(s) can be written in the form of an absolutely and

uniformly convergent integral power series with v(s) as the argument function.
Proof: Equation 216 with equation 217 can be writtep

u(s) —IC(S, £ () dt=—Woy (usv)— S Wom (;v) 219)

m+n=2

From the theory of Fredholm we can obtain the resolvent I'(s, £) such that
£6)+ [ TG, £ @ de=0 ()
of the nonhomogeneous integral equation

o(s) — j Cs, )o(t)dt=f(s).

Equation 219 is equivalent to

we)=Wor (2 )= [T W (L)t 3 [-Wm(2)=[T6s W () dt].

m+n=2

220
Write (220)
- Sy _ t _ s
Wmn(m) ] r(s, t)Wmn(uv)dt - P,,m(lw)
and
i) )
77 )
then,
u(s)=P (S) + P,,m( s )
o mg‘;z uv 221)
is absolutely and uniformly convergent forz < h, v < k.
Write Vl(':) =P1(Z> and solve equation 221 for any value of m by putting
m—1 - s\. .
> Vv(v> for u(s).
v—1
We then have
u(s)="3 Vm(s>
m2=1 v (222)

as a formal solution of equation 216.
It can be shown that there exists %; such that

i (7| i

m=1
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is convergent; that 1s, the series of equation 222 is absolutely and uniformly convergent

for 7 < k;. Hence there exists such a positive number A’ < k, that equation 216 has one and
only one solution for a<h', 9 <h'.

The Bifurcation Case

In the bifurcation case, when there are a certain number n of the null-solutions of equa-
tion 218, consider the associated equation

¥(s) —fC(t, s)P(t)dt=0 (223)

“to equation 218. Equations 218 and 223 each have n linearly independent solutions

@1(s), @2(s), - - . enls),
lpl(s)a lIlz(S), o e . l’Jn(s)')

and the general solutions are respectively

IEYEONEND FAA0k
with arbitrary constants ¢, €2, . . ., ¢n. With real or complex functions p(s) and ¢(t), we
form .
E(s, t)=C(s, 1)+ 2 pu(s)a(t), (224)
and put "~
Aw= [0 Ondr, Bu= [ oua () (225)

The necessary and sufficient condition for E (s, ) to have no null-solution, is that the determi-
nants |4l ||Busl| are not zero. Equation 224 is sometimes called the kernel-transformation.
Suppose at first that equations 218 and 223 each have only one null-solution. Let them be

C1¢91 (S) and Cﬂl]l(t) . Form
E(s,t)=C(s, t) +pi(s)q:i(2) (226)

with p;(s) and ¢,(t) such that

f i (P)pa(r)dr #0, j @1(r)qs(r)dr 0. e

This new kernel E(s, t) then has no null-solution. Denote the resolvent by € (s, t); then from
equation 219, we have

u(s) — f E(st)u(t)de=—pi(s) f a@u@di=Va ()= 3 Wm(2)

m+n=2
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Put
_Wmn(s )—f@(sv t) Wmn( ¢ )dtr;Pmn(S ), POI(S >=P1(S>;
uv uv uv uy, ) v

then equation 228 can be written

u(s)=[—p1(s)—f@(s, t)pl(t)dt]fql(t)u(t)dt+P1(Z\)+ 3 P,,m(s),

m+n=2 uv
or :
s s
u(s)= [—p;(s) f@_(s, t)pl(t)dt:lx+P1(v>+ m;gz Pmn(uv), ' (229)
with »
x=f q1(t)u(t)dt. (230)
We can solve equation 229 for u(s) with x as a parameter, and the result is
s
u(s)= 73y x”’Vn(v> (231)

m+nz=l1

foskh<k ashi<h, |x|<#1, (£1>0), where V;{‘(s> is an integral power series of
v

degree n in v(s). Function u(s), considered as an integral power series of x and v(s), is
absolutely and uniformly convergent. Substituting this series for u(t) in equation 230, we

obtain
x= 3 am f ql(t)V,’{‘(f})dt.

m+n=1

Also, write

fql(t)V{,”(z)dt=Lm (m=1,2,...); 232)

then, since L;=1, we obtain

0=3 Lt 3 o 3 [ va(Vauoyae.
m=2 m=0 n=1 v (233)
This is called the bifurcation equation. If v(s) is given, we can obtain the solution of
equation 216 by substituting each root of equation 233 such as |x| < £, in equation 231, for
1<k, ash,, lesfp
Suppose that Ly # 0 in equation 233 and put

sl=§2mem, sz=§0xm§fm (;) qu(t)de.

Fix a positive number ¢; < ¢; such that 0 < |x| < ¢,. We can choose a nonzero positive
number k: <k, so that |S:| < ao; with a pure fraction a for |x|=¢2, # <k,, where o
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denotes the minimum of |S:|. The number of solutions of equation 233 that do not exceed
¢ is given by Kronecker’s theorem

351, 3Ss
1 6x+8x

271 ) jz1=, S1+S:2 d,

an integer, which is two in our case. Thus we obtain two solutions of equation 216 for L; # 0.
Hence equation 216 has a double bifurcation point at u(s) =0, v(s) =0.

Next suppose that Ly=Ls=. . .=L, =0, L,#0. Then an n-ple bifurcation takes
place at u(s) =0, v(s) =0. The question is whether the solutions are all real. Let equation 233
be of the form

O0=Lux"+Aw(s) + Aoov2(s) + Agv{(s)x+. . . ,

all the coefficients being real; then there are only two solutions if n is even and 4,L, <0,
and there is only one solution for n odd. If equation 233 is of the form Ao +4owx + Lox?®
+. . .=0, then there are two, one, or no solutions according as

A%l—‘l-Lono >O, =0, or <0.

Next suppose that equations 218 and 223 have two null-solutions, p;(s), pz(s) and
q1(t), g=(2), and that :

All Al2
A21 AZZ

Bll Bl2
B2 Bz

#0, #0. (234)

Then form a new kernel E (s, t) by the so-called kernel-transformation
E(s, t) =C(s, t) +pi1(s)q1(¢) +p2(s)q=(2).

Function E (s, t) has no null-solution. Denote the resolvent by € (s, £}, and put

o= [a@uwa, = aa(t)u () de. (235)

From

w(s)=[=p(s) - [ec, Dp(0)de

+[—p2(s) -~ f & (s, t)pg(t)dt]y+P1(s>+ 3 P,,m( s ) (236)
v min=2 uv ’
we obtain an absolutely and uniformly convergent integral power series for v(s), %, ¥:
u(s)= > x"‘y'@V%B( S>, (237)
a+B+n=1 v

s\ . . . - - y
where V‘,’,‘B( ) is an integral power series for v(s), if < ki, i < hy, |x| < €1, |y| < ¢, with
v

suitably chosen positive numbers ¢, 1, ki < k, by < h. Substituting equation 237 in equation
235, we obtain
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x= 2 Laﬁxayﬁ_f. xayﬁzf ()ql(t)dt,

a+f=1 a+B>0 (238)
y= 3 Ligeys+ 3 xS f v (Z)qz(t)dt,
q+Bal a+B=0 n=1
where ‘
Log= f Ve (Z)ql(t)dt, L= f Vgﬁ(z)qz(t)dt. (239)

The sums on the right-hand sides are an absolutely and uniformly convergent integral power
series for x, ¥, v(s) and vanish with v(s).

Now, since ¢;(t) and ¢;(t) are linearly mdependent solutions of equation 218, we
obtain from equation 236

o) =[~pa(5) = [ € (s, om0t [ ater(o)ae

+[ et = [ B0, (012t [ a®enoa,
)= ~p 0= [€ 6 Dm0 [ a0k

+ =m0~ [@ s Dp0t] [ 2001

or
@1(s) =V2(s)Bu + V3 (s) Bz,

(240)
@2(8) =V3(s)Ba1 + V{°(s) Bz,

where

Bu=[euadr,  wr=1.2

Intergrating these equations after multiplying at first by ¢i(s)ds and next by g2(s)ds, and
referring to equation 239, we obtain

0=B;1(Lic—1) +Bi:Ln 0=311LIO+B12(L61—1),}
0= 321 (Lm— 1) + B22L01 0= B21L20+BZZ (L(In - 1) .

We see from equation 234 that Lyo=1, Le;=0, L},=0, L), =1. Hence equation 238 can be
written

0= 3 Lgwit 3 xaynifygﬁ(z)ql(t)dt,
n=1

a+f=2 a+820

- t (241)
0= L gxoyf+ LD IVZ‘B( )qz(t)dt.

a+f=2 a+p=0 n=1 v

“These are the equations of bifurcation. (See Iglisch, 1929, 1930, 1930a, 1931, 1933). Lichten-
stein (1931) deduced similar results by a different method. It has been generalized to higher
dimensions (Levi, 1907). This discussion of bifurcation can be applied to differential equations
in Sturm-Liouville’s problem (Falckenberg, 1912).
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Nonlinear Integro-Differential Equation

Put
Du=§%%, Du(ti)=%u(ti),

and consider with

Umnp{u, Du, v} EZ u(s)"ov(s)%[ . menpj(S, Liye - o tp)
J

Xv(t) . . . ulte)®e[Du(t:) ] . . . [Du(t,)]8e
Xo(t)". . . v(tp)¥edty . . . dtp,
atot. . . ta,=m, Bi+Bst...+By=n,
Yot+yi+. . .+vy,=p, p=m+n+p,
an integro-differential equation

2 Uwnp{u, Du, v} =0, (242)

m+n+p>0
or

lL(S) +fK1002(3, tl)u(tl)dtl'i_fKOlOl(S, tl)Du(tl)dtl

=L(S)'U(S) _fKomg(S, tl)l)(tl)dt;["‘ 2 Umnp{u, Du, ’U}.

m+n+p=2

We have the bifurcation or the regular case according as the integral equation

u(s) +fK1002(S, tl)u(tl)dt1=0

has null-solutions or not.
Lichtenstein first considered simultaneous nonlinear integral equations

U(rr})zp{ua v, w} =O’ U(z) {u, v, w}=0,

mnp

or simultaneous linear integral equations
1 ‘ 1
A{u, v} =u(s) +f LW (s, tl)u(tl)dtl—l—f L (s, t1)v(t)dty=1(s),
0 0

Ao{u, v} =v(s)+ fl L (s, tl)u(tl)dtl—{—f L&) (s, tl)ﬁ(tl)dt1=g(s).

After reducing them to a single, linear integral equation as suggested by a remark of Fred-
holm, he discussed the regular and the bifurcation cases for this linear, integral equation
and then returned to the n simultaneous nonlinear integro-differential equations.
EQUILIBRIUM FIGURES
Fundamental Integro-Differential Equation

Let the coordinates of a point on the surface S bounding the body T (which may consist
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of several components) of an equilibrium figure be denoted by x=X(¢, 1), y=Y(¢, ),
z=27Z (&, m) such that

33 ) s o

Denote the Newtonian potential of the body T by ¥V (x, y, z); then

V(X Y,Z)+2- (X2+Y2)

2xf

is constant on each component of S, where w is the rotation velocity such that o < V2w«f,
k is the Gaussian constant, and f is the density supposed to be constant. The resultant of the
attracting force and the centrifugal force has been shown to be directed inward or zero,
and z=0 and y=0 are two symmeiry planes whose existence has already been proved.
Suppose that if we keep the volume constant there exists an equilibrium figure T with w,
in the neighborhood of T with w. Then we should have

Ny, 1, Z0y—VX, Y, Z) = f(X2+Y2) ——}(X2+Y2)+s, (243)

where s is a fixed constant on each component. If T consists of only one component, then
s§=0. Draw an outward normal » at a point (én) on S and take { on that normal; then S; is
represented by {={((£, n, o1). Let the distance of (£, %) from the z-axis be R, and the
cosine of the angle between v and the perpendicular from (£, 9) to the z-axis be 7. Further-
more, let (£, m, {*) be the coordinates of a point referred to the xyz-axis system, so that
Viz,y,2)=W(&,m, {*), Vilx, y,2) = Wi(&,m, {*), and let the distance between a point (£, 7))
and a point (£', ') be p. The attracting force due to T on the point (£, ) of mass 1 in the
v-direction is fk(3/9v)W (£, m, 0), and the gravity there is normal to S and equal to

fx :—V W(¢, m, 0) + w?Rr=fiy, (244)

where ¥ <0 since the gravity is directed inward. Write V;(X1, Yi, Z:)=U,(¢, n), or
V(X,Y,Z)=U(¢, n) when the point (£, ) is on the surface S, or S, respectively.

We consider a one-parametric family of surfaces S;(0=< 2= 1), between S and S, and
denote it by S+¢(S:—S). A point (£, n, t) on S,
corresponds to a point (£, ) on S. Denote the poten-
tial due to T, (which is the body enclosed by Sp)at the ™
point (¢, 1, {¥) by WdE, m, *), and let the potential at
(&, m, 1) be UL¢, n). Furthermore, let ¢; be the angle
between v and the outward normal at (£, 7, t{) to S;,
do; be the surface element of S; at (£', v/, t{'), and
¥, be the angle between v and the outward normal
to Sc at (£', m', tL'). The equation for Sis x=X (&, n),
y=Y(& m), z=Z{£, m), and the equation for S; 0
- is x=X+atl, y=Y+ bt{, z=Z + ctl, where a, b, c are the direction cosines of ». Thus
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dCTt'=d§'d'fl' VA¢'2+Bt12+Ctlzo
A,___a(Y'—l—b’tC’, Z'+c'el) B,=6(Z’+c’t§’, X'+a'tl)

! (€', ") ’ ‘ ¢, m') ’
_ X ' +a'tl', Y +b'el') cos of = &AL+ B+c'C/ (245)
a(fla 7l,) ’ i VAt’2+Bt’2+Ct’2’

C/

aA{ + bB{ + cC{
VAT BELCE

cos ¥/ =

It can be proved that U, — U is uniformly convergent for sufficiently small

14
3

U,—U=U0+0®+ . | |

¢l

b

IQ_C_
2 an

so that

sp"

1 1 1 ot , o1 (l) (n——l)% gn-2 (_1_)
Z"?K(n)=7f! A'2+B'2+C'22(a€ af) [A‘ dtn—1\ py T\ 1 ) o s pt
() (1],
2 at2 atm3 \ py
where o o
=020 g LX) g UL T (246)
(¢ m") a(¢',m") (€', )
In particular, for n==1, we have
9 1 '
=2 ={'do. (247)
vo—tZ Wm0+ [ Frdo
It is proved that
|UD+UG+ . .| |=|T],
and also
a_?‘ }ﬂf 2w |92V | |92¥
dE |"1om |7 | 0&2 |’ |a&m |’ | on?

are all bounded by < ye? with a finite positive constant 1y, if .

9% |_§_2_€_ 92
0£2|’ [9éam |’ | om?
Write
wf—w?

2kf =\
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and note that X2+ Y2=R2+2R7{+ (a?+ b2) {2. Then, from equations 249, 247, 243, and 244,
we obtain our fundamental nonlinear integro-differential equation for determining ¢:

2
$L+ fs —lp- {'do’=s—R2\ __Ew’? (a2 +b2) 2 —2RTN— (a2 + B2)NE—-U@D—UB).  (248)
This equation is of a form-similar to that of Liapounov.

Existence Theorem

The linear homogeneous integral equation

.¢§+L%—§’da’=0 (y<0) (249)

has at least two linearly independent null-solutions if S is not a surface of revolution around
the z-axis. If S is a surface of revolution around the z-axis, then there exists always only one
null-solution. The proof is given by displacing S by a small amount parallel to the z-axis,
and then rotating S through a small angle around the z-axis. Such null-solutions u; and us
satisfy

jl[l uido=-—1, f;ll udo=—1. 250)
s

If we displace a nearby equilibrium figure S, by a small amount parallel to the z-axis, or if
we rotate it through a small angle, then we obtain the same equilibrium figure. Hence we put

f Yuldo=0, @51)
S

f ;[; usldo=0, (252)

in order to fix the position of S;. When S is a surface of revolution, then u;=0, and equation
252 is automatically satisfied. Put

1 ' ' ’ 1
Zlu;=¢ (u1u1+uzu2) +"¢"'N (253)

and let y=0, z=0 be the symmetry plane of S. Let ¢*, o* be the image of the point o, o’
with regard to y=0; then p(c*, o*)=p(o, 0'), w(c*)=u(0), u(oc*) =—u (o),
U(c*)=1y(o). Hence N(c*, o*')=N(o, o'). Let o, o} be the image of the point o, o’
with regard to z=0; then N(o,, o;) =N(o, ¢'). Referring to equations 251, 252, and 253,
we transform our fundamental equation 248 into

¢§+LN€’do-'=s-—R2)\—§c95](a2+ b2) (2 —2RTAL

— @+ —UD—U® . . .
=T {\s, & | (254)
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Our next problem is to determine whether equation 249 admits any null-solution other than
u; and us.

The Regular Case

Suppose that there is no null-solution, besides u; and u2, of equation 249. By the well-
known theorem, no null-solution exists for

L+ L N{'do"=0. (255)

Making successive approximations, we obtain the solution for equation 254 by solving the
following set of equations for &1, &, . . .

¥y +f N{do'=s—R2\,
s
l[lgz+fs chldo" = H {)\, S, cl},
¢§3+fSN§éd0"=H{)\,s,§2}, C
It can be proved that the series
2 b
n=1
is convergent insofar as [\ |, | s | are sufficiently small.

The Bifurcation Case

Suppose that there are m —2 null-solutions us, us, . . ., un besides uy, uy of equation
249; w1, up, uz, . . . um are the linearly independent, complete system of solutions for
equation 249. Since y=0, z=0 are the symmetry planes, v3(0)=uz(a*), . . ., vn(0)=un(c*)
are null solutions of equation 249; w;=u;+v;, wi=u;—v;, (i=1, 2, . . ., m), are also null
solutions. If we denote a linearly independent, complete system of null-solutions by wii(o),

(i=1,2, . .., m), then either wi;(c*)=wy;(0) or wyi(0*) =—wyi (o). If S is not a surface
of revolution, then u, (0*) =—u2(0), and hence wi = 2u, , W, = 2uz; thus u; and u, are included
in this complete system w;;. Similarly we repeat the argument for the symmetry plane z=0
and find that u;, u, are included in the new complete system. Hence we consider u:, us, ,
Us . . ., Unm to be our linearly independent complete system of null-solutions of equation 249.
Let u; be the linearly independent, complete system of null-solutions, such that

lllll,i'i‘f lu{afo"=0,
with sP

f¢u§da=— (i=1,2, ..., m).
s

Suppose that uz, . . ., umare symmetric with regard to y=0 and z=0. Then
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m 1 = 1
N — "l =—— "waul == N.
U ;}lllwzu p lellulu v "

satisfies Ny(o*, o*)=N(o, 0'), Ni(0o,, o) =Ni(0o, 0'), and the integral equation

¢§+fSN1§’d0"=0

does not have any null-solution. Write equation 254 in the form

WL+ L NiL'do' =TI{\, s, £} +3 vrius, (256)

i=3 —~
ri=—f Yull'de'  (i=3,4,...m), @257)
S .

and consider r; at first to be indeterminate parameters. If |\, |s|, and |ri| (i= ., m),

are sufficiently small, then it can be shown that there exists one and only one solutlon L
which is analytic with regard to these m parameters A, s, ri.

Let H, be the resolvent for the kernel (1/{)N;. Since

LHl(O', o )ui(o')do' =0,

we.obtain

+2rju] R A+J Hl( 1 R'Z)\) do’
7 = ll'

+2fy0m;3 e mmAOSPIFES L rEm (votwvitpus+ . . . +um>1).  (258)
Since { is symmetric with respect to y=0 and z=0, we have
f Cllqu'——: 0, f Cu_zd0'= 0.
s

Substituting equation 258 in equation 257, we obtain m —2 equations for rs, . . ., rm. Since

J-lllu?d0'=—,l, and le(O', o )P (o)ui(o)do=0 (=3, ... m),
S 5 :
from the theory of linear integral equations, the result is
)\IR%,-dO'—sf wdo+PR; (N, 5573, - - ., Tm)=0,
s

§Bz=23yoy1#3 L. um }\vosmrug L. r#lm (259)

(motvitpst . . . Fua>1).



-THEORY OF LICHTENSTEIN 137

We thus obtain the solution r;=r;(\, s)(j=3, . . . , m) which vanishes for A\=s5=0. Hence
the study of equilibrium figures in the neighborhood of the given figure is reduced to the
discussion of equation 259.

We divide a linear series into two parts A =0 and A <0, and call each part an arm.
If we can develop in convergent power series of A in the neighborhood of A=0, then we call
the linear series regular. A regular series consists of two arms A >0 and A < 0.

For simplicity, put s=0, m=3; then u; is the only new null-solution. Equation 259
is written

A)\"}"%()\’ r3)=0’

A=fS'R2u3da, B )= BuNrt  (j+1>1). (260)

il

Let A0 and Boxr¥(k = 2) be the first nonvanishing coefficient. Then, near A=0, we have

A 1k A 1K
=|——\ ) —_—
=) e (7))

where @ is a power series in A which vanishes for A=0. If £ is even, there are two real
series of equilibrium figures, and two arms, for which — (A/Box)A > 0. If k is odd, then there
is only one arm for A > 0 and one for A < 0.

Next suppose that A=0, By, # 0; then equation 260 is written explicitly Bosr? -+ BiirsA
+ByoA*+ . . . =0. If B} —4Bw:B30 >0, we have two regular series crossing each other. .
If B2 —4By <0, then there is no real equilibrium figure in the neighborhood, and S is an
isolated figure. If B%, —4By:B2 =0, then we must study the higher-degree terms.

Suppose that A=0, Bo; =0, Bi; # 0, Byy # 0. We have

Bnr3)\+Bo,Lr§’+Bo,llr§"+ ce Byt . )+ .. =0 (n>2)
In this case we have one regular series

11

By )1/(n—1)
=z (—=" A
& ( BOn

and two real arms

for n odd, B,1/By, <0, and one real arm

B11 )ll(n—l)
=(—Z2\
s ( BOn

for n even (Lichtenstein, 1917, 1920; Schur, 1919. Cf., Lichtenstein, 1921, 1922, 1922a, 1927,
1928; Holder, 1926, 1929, 1933; Kihler, 1928; Garten, 1932.) The equilibrium figures of a
heterogeneous liquid mass have also been studied after the fashion of Liapounov (Lense, 1923;
Lichtenstein, 1923a, 1933, 1933a; Holder, 1933; Maruhn, 1933, 1934).

375-031 O - 71 - 10
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Boundary Value Problems
Consider a boundary value problem which leads to a nonlinear integro-differential
equation

ch( d€>+‘1§+j”“(x’ x1) (1) dx; =U(x)

261)
- z Ef . fLmnj(x; Xiy o o o5 Xp)LOLE . L. Cgpvﬁvfl o VBoday L L dx,
min>1
with the boundary condition
£(0) =¢(1) =0, (262)

where p(x), q(x) are continuous, M(x, x;) is continuous and symmetric, and the series on
the right-hand side is absolutely and uniformly convergent as long as |{|, |v| are sufficiently
small.

A homogeneous differential equation

MA@ = (p2)+at=0 (263)

cannot have more than one solution that vanishes at 0 and 1 and is continuous with its first
and second-order derivatives. If such a solution does not exist, for example in the case ¢ <0,
then there exists Green’s function G (¢, x) =G (x, £) such that it is continuous in 0 < x =<1,
0=<¢ =<1 and satisfies equation 263 as a function of x in 0 <& <1, x # £, and also satisfies
equation 262, i.e.,

AlG(&, x)]=0, G(£,0)=CG(£, 1)=0;

its first-order derivative jumps at x= ¢, such that

P G(f, £+0)—— G(f §-0)=

p(f)
In this case, a nonhomogeneou’s equation
a dC)
2 (r %) +a=hw 264)
has one and enly one solution
(©=— [ (& D) ds. (265)

If the homogeneous equation (equation 53) has a solution u(x), such as

L ' u(x)]da=1,
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then we have Green’s function with an extended sense such that

ALBE 0] =u@u@), G@E =6, 1)=0, f ® (&, x)u(x)dx=0,

1

d d =
7y B £+0) — 3z 8, £-0) =ToE) B¢, x)=6(x, &).

Then nonhomogeneous equation 264 is soluble only when

Jh(x)u(x)dx=0, (266)
~ and the solution is
§(§)=—f@5 (&, x)h(x)dx+cu(€), ¢ = arbitrary (267)

(Hilbert, 1912).
When equation 263 has no solution, we obtain, putting

fG(x,x’)M(x',xl)dx=—N(x, x1),
G(x, " )Lmnj (x5 %15 - . o, %) == Nmnj(x; 2", %1, . = .5 Xp)»

a nonlinear integral equation
{(x)+fN(x, xl){;(xl)dx1=—fG(x, 2 YU (x" )dx'

- 2 2 f .f(Nmnj(x; %' Xy oo xp) ()L L L LoevPuBy L vBpda'dxy . . . dxp.

m+n>1 j

According as the homogeneous equation
L(x)+ f N(x, x1)¢{(x1)dx; =0

has a null-solution or not, there occurs the bifurcation or the regular case. If the linear integro-
differential equation

g;(p %)+q§+fM(x, x1) (%1 )dx, =0 (268)

has no solution vanishing at 0 and 1, the regular case occurs, If the equation has null-solutions,
then the bifurcation occurs.
When equation 263 has a null-solution u({x), then equation 261 is written

;g;(p d%%)"‘(11§= (qx—q)é*—fM(x, 21)¢(x)dx +U(x)

- > Ef c. fLmnj(x; Kis o v o Xp)0OLE L L LovPOBL L vBodxy L . L dxp,
m+n>1 .
(g: <0 constant).
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Let the Green function for

d( 4 —
dx(p dx>+q1§—0
be‘é(é, %); then,
() + [ 6, 2= a0~ [ [ G 20U, 2) ) dirde
[t )vara+ 3 3] [ e L, )
XC“(x’)C‘;‘! R 1 €720 V1 2 - T .

According as equation 268 has a null-solution or not, there occurs the bifurcation and the
regular case (Lichtenstein, 1931).
Saturn’s Ring

Lichtenstein applied the theory to the oscillation of the incoherent particles forming
the rings of Saturn (1923, 1924, 1932, 1933). Consider a mass M at the coordinate origin and
a constant density distribution of p along the circle C : x+y*=R? The ring rotates with a
uniform angular velocity  around a fixed coordinate system xyz. The position of a particle
P, of the ring is defined by R and s/R; we count s along the ring. A disturbing mass IV is
supposed to be at distance R from the center of the ring, and particle P, is disturbed to a
position P[R+¢, (s+0o)/R]; while { and o are functions of s/R and i. Assume that |{| <R;
then

s+ao

x=(R+0) cos(wt+ R ), y=(R+) sin(wt+s+To-).

Since the kinetic energy of the particle is

T=(1/2) [(Z—J:)Z+(Q—X)2]=(1/2)(R+Z_:)2(w+%Q—q)z—!- (1/2) (g—g)z

ot t t
the Lagrangian equations of motion are

ld 2 2
~®R+0 (0rpG ) =00 g R+ LFr2r+p (05 22) 22,

92¢
at?

where 08¢, Q-80 are virtual work due to gravitation. Let v be the direction of the normal

to C at P and 7 be the direction perpendicular to v. Then, for the attraction of the ring to
the particle at P, we have

— i r___a_ _E - £ r gt J R
Q: Kfcuds aDlogp, Q,,—K(l—’rR)L,u. ds Elog;-

Let the distance between the disturbing mass J% and P be P; then for this disturbed motion,
we have
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ng—KED?aV log 5 Qs KED?(I-FR) a'rlog >
For the attraction of the central body, we have
e MK —_—
QC_ R+§, QLT"'O-
Hence the Lagrangian equations of our problem are
P p_ loo)\__ Mk f 1ds’ O 1oe B KR .
e (R=0) (w—i—R a::) R+§+K cp',ds ™ logp+K§IR ™ log 5’
11 o laoylag
(R+0) R? at2+2(R+€) (w+R at) R ot (269)
— e(1E) [ s 2 10 B 1) 1 B
—K(1+R oM ds 6“_lo.gp'+:< 1+=R Emaylog >

Denote the distance of two points (R, s/R) and (R, s'/R) on C by po, the outward normal
to C by v, and the tangent by 7¢; then we have

' 3 R f 3 R
'ds' — log —=— 'ds' — log —=0.
Luds v log P T, C[.L s . og P 0

Also, we have

w2=é—% (M-HrRy.).
Put

V=w2+m=2w2—ﬂ-

R? R

Let B be the angular velocity of I, and R, & be the polar coordinates of P with reference to
the fixed coordinates «x, y. Then 9=+ B¢;

Pr=(R+0)?+R2— 2R (R+1) cos (w+%’—),

p= (R+0)"+ (R+{)2— 2(R+1) (R+Y) cos (5T - L7 T),

Write B~ a=1.

Suppose that the solution of equation 269 is of the form

(270)

{={(s, t)=Z(s—Ryt)=Z(u),
o=0(s,t)=8S(s—Ryt)=8(u),

where Z(u), S(u) are periodic functions of period 27R. We have
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A__p dZ P, ,EL

at Ydw o Y dur
do _ ds 20 __ 5o o d2S
o, YT, Pyt A asrare
ot du ar? du?

Hence our differential equations become

Li(Z,S) ERzyziZ-Z—-}-ZRng:SL-—vZ

du?
ds\? ds ds\ Mk (2> 73
= Rvy? <%> —Zwa-Jl;-i-‘yzZ (El;) ——RT'(E;—EE-I— .. )

i (L1082 10 Bt Lo rog B
+Kfc,u,du (avlog P ].og;pn +K§may\log P—Al(Z, S).

271)
e @Sy o 42
Ly(Z,S) =R?*y I 2yRw au
o mg @Sy pdS dZ
=—7RZ du? 2y’R du du
(8 R_8 R 9, R_
+KL W' du (37 log © —5~log po)+u§maT log = = A(Z, 5)
At first we consider
27
Ry P2 4 oRye B — 07 =Fi(u),
du? du
(272)
azS az
22 = =
Ry 22 2Ryw au Fo(u),

where Fi, F, are periodic with period 27R. It is questioned whether periodic solutions exist

with the same period as F; and Fb.
The solution of the homogeneous equations from equation 272 is

—_ pu . pu.

Z(u) =B+ C cos YR + D sin YR’
(273)

= vu 1 ..I)—u-_ !Lu

S(u) =A+B 2R'yw+ Cq sin YR Dgq cos VR’
where
p=1’2w2+%ti’ q:.—z_a.).___
KL

20+ 7R

If we set V2% F kmii/R = 7y, then the homogeneous equations admit three linearly inde-
pendent periodic solutions:
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2Rw .

0, R; R cos %, -—-_y— sin —11%; R sin —, — = cos %* 274)

Suppose at first that y2 # 202+ kmu/R; then the first solution Z () =0, S(u) = is the
only periodic solution with period 27R. Let & (£, u) be the periodic Green function for

d*7 v

a  yRiZ=0

such that

d d
u ou
Then the solution of equation 273 is written

2w

7R ds 1 2wR
20 =2 [ 66 0 L du——p [T 66 wFi @,

14

20 2R dZ 2nR
50 =—22 [ 66, 0) L dut o [ 66 S W

1 27R
"Wfo (&, u)Fs(u)du,
or, integrating by parts,
. 2_(1) 211'R_a_ _ 1 fZ‘er F d
2@) == | " Fa 0 nS@du =5z | 7 6 wFi(w)ds,

27R X 27R
s =28 [ o wz@d+ S [ 66 s @75)

1
v?R?

f:m G (¢, u)F2(u)du.

Evidently the homogeneous integral equations from equation 275 admit the solution Z = 0,
S =R. Hence, putting Z=0,S=R, F,=F,=01in equation 275, we obtain

27R

2R g v » -
j(; a—lz@(f, u)du=0, YRE o G (¢, u)dy,:yTREL ®(u, £)du=1,

and hence (276)

2n7R 3 _
L 52@(.5, u)du =0,

Let the integration domain E be two circuits of (0, 27R); put Z(£) = Z(¢) for the first
circuit and Z(£) =S(¢) for the second. Put ®(¢) = PW(¢) in the first circuit and
(&) = PP (&) in the second circuit, where
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1 2mR 1 R
Q) =~ L G WFiWds,  ¥O(E) == p L &£, u)Fa(w)dy;

let K(¢, 1) be as shown in Table II.

TaBLE IL. —Integration Domain E Circuits

1st circuit of u 2nd circuit of u
L 2w 9
1st circuit of &: 0 ~SR3a G(¢, u)
ond circuit of & | 220 (¢, u) — (¢, u)
. ’ YR ou ’ v2R? i

then equation 275 is written as a single integral equation
26) = [ (e, wyz(wdu+ (). @

The corresponding homogeneous integral equation has a null-solution W (¢), which is equal
to 0 in the first circuit and equal to R in the second circuit. The necessary and sufficient
condition for the solubility of equation 277 is

1 2R 27R
—= a7 sE wRwa=o,

or, by equation 276,
27R
L F:(u)du = 0. 278)

With the resolvent H(£, u) the solution is

2(6) = [ HE wO@du+ W (), @)

where c is a constant; ¢ is seen to be

. 1 27R S d
c= 27TR2 j-o (f) g'
Put ¢ = 0. Then
ds dz dazs azz .
Isl,  1Zl, ul’ Tl ik Tt <k if |Fi(u)|,|Fa(u)| <h,

especially, if F1(u), Fo(u) are respectively symmetric and antisymmetric with regard to the
direction 0IX, that is, if

Fi(n) = Fy(200—u), or Fo(u) =—F2(3%—u); -  (280)

then the solution for c=0is
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Z(u) =Z(280—u), or S(u)=— S(28—u). (281)

We apply this theorem to our nonlinear integro-differential equations (equation 271)
and write

das ds dS\? VAR A
Fi(u) = Ry* (d ) —2y0Z =+ vZ (du) - (“’Rz_“Rs—' : )
rdi (10 B -2 100 B 9 10 K.
+Kfc”'du (auk’g P Bvologpo>+K§mavlog P’

da’s dsS dZ R 9 R P R
_— ad al , S DO L S .
Fs(u) v?RZ p 2deu au +Kfcy.du (aTlogp - logp)-l- Kfmavlogp

The integrals in these expressions are shown to be small. If we take for Z and S arbitrary .
functions with period 27R, satisfying equation 281, then equations 280 and 278 follow natu-

rally. Thus equation 271 can be solved by successive approximations, starting with Zy=0,
So=10. At the first stage, take

2R
Li(Z., S1) = Ai{Zo, So), L:(Z4, 81) = A2 (Zo, So) with fo Si(u)du=0;
at the second stage, take

2R
Li(Zs, S3) = Av(Zu, S1)s La(Zsy S2) = As(Z1, S))  with fo Sa(w)du =0,

Finally we obtain the solution in unconditionally and uniformly convergent form

Z=2+3 (Zi—Zi-)),  S=Si+ 3 (Se—Se-1).
k=2

k=2

Next, consider the free oscillation of the ring. Take =0, and look for solutions of the
form '

(=i(s,t)=Z(s—Rét)=Z(u), o=0(s, t)=Z(s—R8t)-—jS(u) (282)

where Z(u), S(u) are periodic with period 27R in u. The equations

R 8% o008 70,
dzs dz_
R?8? -d———2R8w n =0,

admit the three solutions (equation 274) with period 2#7R only when &* takes the value &,
=4u?—y=2w+ kmu/R = k(2M + 37uR)[R?; that is 0, R; R cos u/R, (2Rw/8,) sin (u/R);
and R sin u/R, — (2Rw/8¢) cos (u/R).

Examine the solution for 8=8-+ with a sufficiently small 7. Our equations become
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d*Z ds
LW(Z, S) = R?*8¢ an ——+2R8w - Tu —vZ
d*Z ds d*Z ds ds
=—')‘](260R2‘—+2Rwd ) Rznz-d—z'-i-Rﬁz(d ) —ZSwZa;
dS\* Mk (Z® Z°
+62Z(d > "R (’EE"Rs e )
wi [ wawfZiog® — Lol =n0(z,s)
Kc”“av gp vy pd » =
d®s dz
L2(Z2°8S) = Rzﬁod 3 — 2R&w —— au
dzS dZ dS d*s
222 2,2 30 peay 4O
(26011 2Rw 22 ) Rnt 45— perz 23
— R DL f wdu' {— log Ii——a—log-R—}EA(Z)(Z,S).
a7 p 97 Po
We seek the solution of these equations such that
2R 2R
f [sm -Z(u)— =2 cos = S(u)] du = f S(u)du=0
0 0

Denote the Green function for

d*Z v

d  sREZ =0

by &o(&, u), such that G¢(&, 27R) = & (£, 0), (8/0u)Gy(&, 2wR) = (3/0u)Go (£, 0),

Go(— &, — u) = Go(&, u). Similarly to the former case, we obtain an integral equation

2(6) = f Ko(£, ©)Z(u)du + Fo(£).

The homogeneous equation has three null-solutions

=0. AR -5 L pp2w . U, —BR cin ' — BRZ® o5 k.
0, AR; w2 = BR cos R R @ sin = R ws = BR sin 5, BR 3 cos 3
where
1 1 o8
A_27TR3’ B_7TR3 4+ 8¢

Form an integral equation with the kernel

Ko(¢, u) —wi(§)wi(u) = we(Owe(u) —ws(§)ws () = N(&, u).
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Put
FWR (cos-— Z(u)+ sm—- S(u)) =d, (283)

0

then our equations take the form

Z(&)— sz ™ cos & ;{‘ L Z(u) du

* fo' (5202 88 Go(€, u)—. BeRz 22 §in f; u)s(u)du

=dR2R? cos%—sszf Go(£, n)AW [Z(u), S(u) ldu,

S(g)—-jo [520% a" o, u)———BzRZ singgu]Z(u)du

- 27z Dol(€, u) — 2RZ—— BR? cos *—2{S(u)du
f [8 R fR ]

=29 papag -sin§~—ijm Go (&, 1) AD(Z(1), S())du
B R %Rz, ; ’ ’

with Z(— &) = Z(¢§), S(— &) =— S(&). Denote the resolvent of

26) = [ N& wz@)du+0(0)

by $ (&, u); then the solution is

2(¢) = 0(8) — fE@ (€. )0 (u)du.

Here we have taken the domain to be E, the double circuits of 0 to 27R. Develop the solution
Z(£¢), S(£) in powers of d, m, and u. Each term of the expansion contains d. Substitute these
expansions for Z(£), S(£) in equation 283; then we can express 7 as a power series of d and
. This is the bifurcation equation. These solutions are all periodic, and represent progressive
waves. The configuration of the particles rotates with angular velocity w + 8¢ with reference
o the coordinate system fixed in space.

For other kinds of periodic solutions we consider Z(u), S (1) to be of the form of equation
282 but with period 2rR/m (m > 1). In order for them to have a period 27R/m, the value of §2
should be

1 2 Kﬂfb)zi_
8 = > (2 + R m285 2R2(2M—l—3;uer)

We obtain the solution by putting 8 = 8; +n*, just as in the previous case.
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APPENDIX A

Poincaré’s Tidal Theory

EQUATIONS OF MOTION

Dynamical theory of the tidal oscillation of oceanic water has been treated by Hough
(1897) and Goldsbrough (1928, 1929, 1930, 1931, 1933) by the method of forced oscillations.
Poincaré (1896, 1903, 1910a, b) discussed the theory by use of Fredholm’s theory of integral
equations in the boundary value problem. The solution can be expanded in generalized
Fourier series in the eigenfunctions of the boundary value problem, so that whatever the
shape of the coast and the bottom of the ocean, the expansion will be carried out by numerical
evaluation, possibly with electronic computers, and all possible modes of oscillation will
be derived. Poincaré’s theory was applied by Blondel (1912) and Chandon (1930) to the Red
Sea, but not with much success. Jager (1916) considered an ocean bounded by a vertical coast
and discussed the Green function of the problem and proposed Ritz’s method of variation in
accordance with Poincaré (1910b). Bertrand (1923) studied in detail the singularity of Poincaré’s
integral equation for a dynamical tide. Proudman (1913, 1914, 1916, 1924, 1928, 1932, 1933;
Proudman and Mercer 1926, 1927; Proudman and Doodson 1924), with practical applications
(1925-1929), based his theory on the quadratic form of an infinite number of variables in a
manner similar to Hilbert’s theory of Fredholm’s linear integral equations.

Laplace derived the equations for tidal oscillation which can be reduced to a partial
differential equation of the second order of the elliptic type. The coefficients become infinity
at the critical latitude, as well as the integral appearing in Poincaré’s integral equation.
The difficulty can be avoided by taking Cauchy’s principal value for the integral; also by
iterating the kernel of Poincaré’s integral equation, using Fredholm’s procedure.

When the period of tide tends to infinity, it is called the statical tide of the second kind.
The tide of the first kind does not depend on the depth of the ocean, as studied by Laplace.
The long-period tide of the second kind and the dynamical diurnal and semidiurnal tides are
studied in the present article. Proudman classified oceans in three classes by the eigenvalues
of the proper oscillation (see the criticism by Fichot, 1938).

Suppose that the oceanic water is a perfect and incompressible fluid with unit density,
and consider the forced oscillation under the attraction of the sun and moon during the
uniform rotation w of the earth. Let the coordinates of the earth’s center in the space-fixed
reference system be x, ¥, z and those of a point in the ocean referred to the earth’s center be
£, m, L. Denote by I1(x, y, z, t) the potential due to the tidally deformed earth and by P the

149
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potential due to the sun and moon. Let p be the pressure in the oceanic water at (x, ¥, 2);
then the force is represented by grad (Il + P — p). If the potential at the earth’s center
due to the sun and moon is Pg, then the force acting on an ocean molecule at (x, v, z) is
grad Q, Q=TI+ (P—P,) — p. Denote by w the rotational velocity of the earth and by (x1, y1,21)
the coordinates referred to the earth’s center in the reference frame rotating with the earth.
Let & be the distance from the rotation axis of the earth to the molecule in question, and

u, v, w be the displacement of the molecule from its equilibrium position; then the equations
of motion of an oceanic molecule are

du_, du_oR

ot? ot 9x1’

9% ov __ dR w?8?

s Lot =+2> 4+ (P-Py) -
at2 w ot ay17 R 2 +( PO) D,
Fw _ IR

6t2 azl

Let the colatitude 6, the longitude , and the radius vector p be the polar coordinates of the
molecule referred to the rotating earth with the earth’s center as origin, and U, V, W be the
displacement of the molecule from its equilibrium respectively along the meridian, the
latitude parallel, and the radius vector; then,

U= u cos 0 cos y + v cos 0 sin ¢ —w sin 0,
V =—u sin Y + v cos ¥,
W = u sin 0 cos Y+ v sin @ sin Y + w cos 0,

and the equations of motion take the form

PU_ .V _OR

a2 oS V5 T G0

L4 oU . W R

ye + 2w cos 0 P + 2w sin 6 o sn ooy’ (A1)
W . aV R

Yo — 2w sin 0 5t ap’

Assume that the depth of the ocean A(6, ¢) is small compared with the amplitude of
the tidal oscillation. If there is no discontinuity in the oceanic depth as a function of 6, ¥,
then dh/dx, 0h/dy, or dhjd6, dk/Ap are small, and we see that w, dw/dz, dw/dt are negligible.
The potential Il is divided into the timely constant part for equilibrium II’, due to the earth’s
mass, and the variable part 11", due to the part that is distorted tidally from equilibrium and

is regarded as due to the simple layer of fluid disturbed over the equilibrium free surface
3 of the ocean; that is,
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o e [ [ L0 8 do"
H (09 ll‘) - f zr(e, ‘l’; 01’ 4’1), (A2)

where { is the negative displacement in the vertical direction evaluated at the point (¢, {')
with surface element do’ and the distance r between the points (6, ¥) and (8', ¢'). Put

o

I +25-=G,

and let G, be the value of G at the equilibrium surface where gis the gravity acceleration;

then,
G= Go—gg.

Dropping the constant part, we obtain, at the free surface,
R=gl{+ 1"+ (P—Py). (A3)

This gives the boundary condition at the free surface.
Since the displacement of water molecules should be tangential to the boundary of the

ocean, a boundary condition is

Vd6—U sin 6dy=0.

The equation for the boundary is h(8, ¥) =0. If the ocean is limited by coasts with smooth
variation of depth, then we take the general boundary condition at the boundary of the

ocean to be .
RV dO— hU sin 6dyi=0. (A4)
The increase of the oceanic water through a curve C with arc element (df, sin 6dy) is

f (hVdO—hU sin 0dyp),
C

],

do = sin 6d0dys,

which is equal to

where

integrated over the area S enclosed by C. Hence
j (hVd6— hU sin 0dis) =—ff { sin 0dOdys,
c s

or, by Green’s formula,

f fs [_ a(:lf : _a(hUaZin o) ]dﬂdd;:_ f L ¢ sin 0dOd.

Since the relation is valid for any closed curve C, we should have
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0=6(hU sin 9) _’_a(hV),

{ sin 20 " (A5)

which is the equation of continuity. Equations Al through A5 were derived by Laplace.

Denote by ¢ the inner angle at the moon M of the spherical triangle formed by M, the
zenith Z, and the earth’s north pole P on the celestial sphere; denote by x the polar distance
PM, by p the distance between the earth and the moon in space, by p the mass of the moon,
and by L the right ascension of the moon. Then the principal part of the disturbing action
of the moon is

or
34 . .
P—Po=4—p§ sin? § sin® x cos 2{wt+y—L)

Su . :
+Z;J§ sin 20 sin 2y cos (wt+¢—L)

+L’:3 cos? 0—1 3 cos? x—1
p3 2 2 ’

P_P0= sin? @ - ezin Azei(zw+u)t+ sinZ @+ e—2 2 Az’e—i(Zw-f-V)t
+ sin 20 - e ' Ajelet)t+sin 20 - e D g i)

3 cosz 0—1 . 3 cos? 6—1 S
+—‘952—'— 2 Ao+ —'"2"— E-A(')e_“’t

where 4 and v are given by the perturbation theory when v <€ w. The variations of p, x, L
are periodic, with longer periods than the period of w.

The first line contains the terms with periods nearly equal to 12 hours, which are called
the semidiurnal tide; the second line contains the terms with periods nearly equal to 24
hours, which are called the diurnal tide. The third line contains terms of long periods. These
three kinds of tide constitute the dynamical tide. The tide due to the terms of infinitely long
period is called the statical tide. Since the equations of tide are linear, we can add the effect
of each term by solving separately the differential equations with each one of the terms of
perturbation. Since the perturbation is decomposed into complex terms, the forced oscillation

due to one such term is called an isochronous complex forced oscillation. We consider a

term F (0, {r) € as the representative.
We obtain such an oscillation by putting

U,V,R, [« eiet,

Equations Al are transformed by writing R = a?® into
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T o: _ 9P
all—2iwV cos 0=« 50"
. _ P
aV + 2ielU cos B—asin b0y’
. ,_8(hU sin )  3(hV)
{ sin 0 70 Y
a®d=gl+ "+ F (6, ¢). (A6)
Solving these, we obtain '
o? od 2iaw cos 0 P

~ 10’ cos?0—a? 80 dw? cos?f—a? sin 3y’

_ o? ad 2iawcos 9P
dw? cos?0—a? sin 00y  dw?cos? 0—a? 40’

The continuity equation is now

Csin0=aio(hlsin9@>+_a_(h oP ) 9@ ahs 0D dhs

30) 9y \ 'sin@ay) 30 oy oY 46’
hy= ha? _ 2iwah cos 6
' 42 cos? —a2’ " 4w? cos2f—a? ’

with the boundary condition
o @+2iw cos 092= 0,
an as

where n, s are the normal and the tangent to the boundary curve, respectively.
These equations become critical at

. o
4?2 cos? 0 — a2=0; i.e., cosf= i%,

which is called the critical latitude. For a semidiurnal tide, @ = 2w, and the critical latitude
is near the pole; for a diurnal tide, @ = w, and the critical latitude is near =30 degrees. The
critical latitude occurs because we neglect centrifugal force. If we transfer the centrifugal-
force term w282/2 in R to the left-hand side and treat it in a similar manner, a new set of equa-
tions with different critical latitude such that cos? = [a?(a2+w?)]/[w2(3a2—w?) ] will
appear, where the denominator is always positive for the semidiurnal and the diurnal tides.

STATICAL TIDE AND FREDHOLM'S EQUATION
Consider the long-period tide of the first kind due to the terms of planetary perturbations
30052()—12 M 3cos?x—1
2 P 2

375-081 0 - 71 - 11
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where the sum can be written

2. —
C___E%?’_COZ_XI:_E (A cos at+ B sin at).

Hough (1897) classified the statical tide in two kinds —the first kind deduced from the equilib-
rium theory and the second kind obtained by putting «=0 in the equations for dynamical
tide. We consider the long-period tide of the first kind. We neglect in equation Al the accelera-
tions 92U/os2, 02V/0t? and the centrifugal force 2w cos 6 - 9V/dt, — 2w cos 0 - 3U/dt; then we
have dR/30=0R/0ys=0 from equation Al and obtain R =1£k(¢) independent of 8, {. Hence
the .equation for statical tide is

(0, ¥ )do' Iy, 3cos?f—1_

3 r(07 d’; 0'9 lp,) 2 k

et0.9) -

on the ocean with surface £ and

{=0

I, o=

20—
— @__C_'3cos20 1=X(0)

on the continent, where
Writing

and €(0, ¥) =1 on the ocean and €(8, ) =0 on the continent, we obtain

- (0, Y)e(8’, ') (6, ¥')do’
£(e, lb)—)\ff (6.0 0", ') +€(0, P)x(6). (A7)

The kernal of equation A7 becomes infinite of the first order if the two points (8, ) and
(6', ¥') coincide. But, since the integral is double, the iterated kernel is finite (Lalesco, 1910),
and Fredholm’s method of solution can be applied. Denote the resolving kernel by K(9, ¢; 8,
{'; A); then the solution is

£(8, ¥) =€(6, ¥)x(6) -H\ffK(f), ¥ 07, 95 Me(0', $')x(0')do”, (A8)

Since the kernel is symmetrical, there exists at least one real and simple pole of the resolvent.
The potential IT due to the part of the oceanic water which is displaced from the equilib-
rium state can be regarded as the potential due to the surface distribution of {:

o ([ Lede o
won=n [ [ HELIT 0 (A9)

Function I1 is a meromorphic function with the same pole as the pole of { and K. This potential
I1 satisfies at the surface (Poincare, 1899)
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oIl
2 —p+ N=—4={, (A10)
where p is the radius vector and {=—AIl+x on the ocean and {=0 on the continent, so

that {=¢€(—AIl+x) on the whole surface; II is a harmonic function defined by AIl= 0 inside
the earth and

all .
2 E—}_ lI=4me(AI—y)

on the surface.
Let & be one of the poles of {(\) and consider

([ €88 )08 ¢ do!
w0, =x || rO,% )

The potehtial Iy due to the displaced mass & satisfies on the surface

61;[)0 + Ho 4«7T€)\0H0

From this we obtain

2 ” no-"i-r-lﬁdo ” 13 (4mreho— 1) dor,

where, by Green’s theorem,

[ [T+ o o

ff 12(4mero—1)do = 0.

Hence,

Thus Ao should be zero or positive, and we obtain

4mozl+[”rlgdo/“rlgda];1.

continent ocean

Consequently the first pole, if it exists, is positive such that A3 = 1/4.
Since II(A) is a meromorphic function of A, it can be expanded

H=T+AI,+. . . +Aell,+. . .,
and satisfies

aLI+1'[ 4qreAll —4mrey.

Substituting the expansion of IT in the latter equation and zquating the coeflicients of various
powers of A, we obtain
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26—E9+ Ily=—4mey,
(A1D)
aH =drel, (n=1,2,...)
ap TTELly n g g o o« o).
Denote Schwarz’s constants by
W, o= f f I, do. . (A12)
3

Green’s formula gives, on the other hand,

() arm,

f f (I,I0,—, — I, _ ) do=0.
€

or, by equation All,

Hence,
Wo,a-1=Wp-1,4q,
or

Wo,a=Wr-1,g01=Wro2,q12= . . . =Wo,psq.

This gives a recurrent formula for W, 4. From equation All, it can be shown that

WZPEWO’ZP=Wp’p=ff H5d0'>0,
€

Wop-1=Wo,op-1=Wp, p- 1~JJHH;~ do=— 1 jfﬂpanpdu'—l-Ll‘ ffHdO',

which shows that W, , > 0.
Further, by forming

ff (all,+ BIL4 4 )2do > 0,
€ .

we see that the quadratic forms

a2Won_1 +2aBW2n+,82Wzn+1, a2W2n+2aﬁW2n+1 +)62W2n+2,

are both positive definite, and we have

Wzn <W2n+1<W2n+2<. L.

WZn —1 W2n Wzn +1

Integrating the expansion of Il term-by-term, we obtain

W\)=Wo+\W,+. . .+ W+ .. .,
and
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—&Lé 477[ffef[% do-/ff H,ﬁdo-] =4r.
Wzn—l
Hence
o W 1
0< 31_):1010 T2 = 4ar.

The radius of convergence of W(\) is accordingly equal to A;.
It can be shown that A, is the first pole of II(A) and that the radius of convergence of Il in
powers of \ is A\;. In fact, from equation A1l with n=n, we have

L1 (6, ¢ !
rh@,¢¢%=ffew,w) (0", y)do'

r(p, 0, 4; 0", ¢")

Since the factor of II,_; in the integrand is singular, we iterate

- €(0', ¢')do’ €(0", ¢ a_o(0", ¥")
Hn(P, 0, ‘l’)—fj 7(0, lll; 91, lll’) J.f r(er’ (II,; ,0"; ll‘") dO'

=”d%Wmmwww¢J €(8", ¥')do’

O, 6, W) (p, 0, s 6,07

If the three points (9, ), (8", ¢'), (8", ¢”) coincide, then the second integral becomes infinite,
at most, logarithmically (Heywood and Fréchet, 1912). Using Schwarz’s inequality, we have,
from the foregoing equation,

(o, 0, )1 = [ [ [0, 9)Tocat@”, 9) Pto? [ [ Pds,
where

o (0, ¥')
O W50, (e, 0,9 0, )

or, from €2=¢€ and

j-[ [6(0”, l!l”)Hn..z(e", l[l”)]zd(T"= [[6(0", lb”) [Hn_z(eﬂ, ll!”)]2d0'”= W2n—4,
we obtain
[Ma(p, 0.0) 1 = WoniK2,  K2= j f o,

Hence
anH?l(pa 09 lb)l < Kl}\nl v W2n——4,

so that the series for II(p, @, ¥; A) converges uniformly if the series for A*VWa,_4 does.
The latter series is convergent in a circle of radius A;. Consequently, the radius of convergence
and the first pole of T1(A) is A;.

Now we expand I in the form
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1w
II= X +vot+Avi+ . . . F At
%

By a similar procedure, we can see that the second pole A2 > A; and that there are an infinite
number of discrete poles A1, Az, Az, . . . which are all positive and at least equal to 1/4.
Note that this conclusion does not depend on the form of the continent. Thus the problem
of statical tide of the first kind has been solved.

FREDHOLM'S EQUATION FOR DYNAMICAL TIDE

For convenience, transform spherical coordinates p, @, ¥, into rectangular coordinates
x, v on the geographical map:

ds?=d@%+ sin? Od{s? =£§ (dx2+ dy?}),

where k stands for the similitude ratio. Dividing z and v by k£ and denoting the result simply
by u and v, we obtain the equations

J%u dv_ OR du_ R
pye 2(:)0030&— 9%’ 6t2+2 s 0 3 ay’

and the equation of continuity

£_3(hu) | 3(hv)

k dx dy
(A6a)
- [ [£ddy
k ! 2r *
the boundary condition being hudy — hvdx=0; or

Eod ()12 (3,22 20tk 000l

k2 dx oy/) 9x dy Iy ax’
(A6b)

_ ha? __Z2iwahcos §

4w? cos? §—a?’ 2" 4w? cos? —o2’

with the boundary condition

aa—q)+2iw cos 9@= 0.
an ds -

Dividing equation (A6b) for { by k2, we obtain

dy Ox

20 a2cI> P 1 <ah1+a_h2>+@_1_<ah1 a_h2>= g
J0x 2 Gx h1 ay k2h1.

The equation of the surface in equation (A6)
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2O=g{+T1"+F(x, y)

is transformed to

a2 o? , o, 1 . dx'dy’
C(x,y)=‘1’(x,y)+—§¢(x,y)+g;ffzK(x,y;xm;;)cb(x,y) Tz
where
F(o’ llj) 1 ( ' ! 1) ! 7 !
V(x, y)=——1L—— KO, 4, 0, 4'; =|F(6, d
(®, ¥) - ngjE LW )R, W) do

with the same kernel K. This is the integro-differential equation for dynamical tide. Equating
L(x,y) of these equations, we arrive at

AD+aqa %-{-b %%+c<b+eff K' (%, y; 2", ¥ YO (', y')dx'dy =F, (A13)
b3
where
Sofa LS, L(h ok
6x2+6y2 4, h1<6x+ay % hi \dy ox =b,
_ o? . _ o? _ \P(xoy)_
gkth, © gkth, Khy )
K(x, y; %',y 1)
=K' (%, 552", 5').

k'?
On the contour C of the ocean, we have the boundary condition

ad . . oP
o a—n-i- 2iw cos f 9 0. (A14)

Consider the Green function G(x, y; ¢, 1) defined by the following conditions:
(1) the function Gi(x, y; £, n) such that

Gl(x,y;f,n)=10g%—0(x,y;§,n), r2=(x—§&)2+(y—m)e,

for any point x, y inside the domain = is harmonic; i.e., AG =0 inside 3.
(2) G satisfies

aﬁ-i— 2iw cos 0 Q—G-=O
on ds

along the contour C of 3. It can be shown that the solution of equations A13 and Al4 is given
by the function @ (x, y) defined by
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1 1 1 7 I
(a1~ | (a'a'+b'B)GRE )"
mJjc
ok [ [ [HeBLL 88D cgloe, mydgan
T n

_% ”2 e’GddefJ; K' (£, m;x', y)D(x', y')dx'dy’

=k f f F'Gdgdn, (A15)

where a primed function is the function in which x, y are replaced by¢, n, and where o', g’
denote the direction cosines of the inward normal of the contour C. Thus the integro-differential
equation A13 for dynamical tide is led to a Fredholm equation containing simple, double,
and quadruple integrals.

Our first problem is to derive the Green function G(x, ¥; £, 1), thatis, derive the function
G so as to satisfy

d log-l- d Iog—

+ 2iw cos 6

9G . _
a an+2twcos6 s =q Fy

along C and to be harmonic inside 3. In other words, we are to establish the existence of the
function ¥ (x, y) which is harmonic inside 3, and satisfies the condition

av .. aV_
a an+2zw cos 0 as——x(s) (A16)

along the boundary C.
It is known that the logarithmic potential

Viz, ) =L p(s") log—l; “ds’,  r=V[x—&() 2+ [y—n(s)]2,

where p(s') is a continuous function of s’, a curvilinear abscissa of an arbitrary point from the
fixed point on C as origin, satisfies the following conditions:

(1) it is continuous in x, ¥ for all points at finite distances in the plane,

(2) it is harmonic, so that AV=0 at all points except the points on C,

(3) the inward normal 8¥/dn; and the outward normal aV/dn. satisfy

o p(s) + f p(s) 2 ay,
i C

o ,cos
2 —wp(s>+fcp<s> oV gy,

one

where  is the angle between the inward normal and the vector r, and the principal value of

Cauchy’s integral
Ty sing oV
fc p(S ) r ds’ = ds
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converges to the tangential derivative uniformly if the radius of curvature of C is larger than -

a fixed number and p(s) has its derivative. Such a function p(s) satisfies
Ncosy ., ] ! Nsing
—amp(s)+a| p(s )~T~ds +2imcos 8 p(s )—r——ds =x(s). (A1D)
c c

This is an integral equation of Fredholm’s type, but one of the integrals is replaced by Cauchy’s
principal value.

Let x, ¥ be two variables in the complex plane, f(y) be a function of ¥, and C be an
arbitrary arc of a curve containing the points x and y. Exclude two arcs xa, xb of equal length
on the curve on both sides of the point x. An ordinary integral

F(x, h)= fly)dy

C-ah Y —X

?

which is a function of k, tends to a finite limit as 2 — 0; then the limit is Cauchy’s principal
value denoted by ,
"fly)dy
c y—x

Assume that f(y) is holomorphic in a connected domain D, and construct two closed

curves M and M’ on both sides of the closed curve C with a unique tangent at each of its

points. Describe a small circle ADBE with radius » and center x. Let Q be an arbitrary point
on the closed curve C. We have

S_1{ f&) 1( fl&)
2 2 wy—x Y] 5=

E (LQA‘-'_ AEBT*-st)A_}_fAbB')%%)%!

= oo f(y)dy (LEB ng) f(};)a’y,

- -

[y

Hence,
_ fly)dy_ S 1 f(y)dy
F(x,h)— BQA Y—X (fAE‘B .[ADB -

Put

y=x+he,  f(y)=f(x)+4h;
then

fiy)‘iy if(x )f do+ih [ Ado,
and

fim | LD lim (—BEA).

=0 Jugp ¥ X
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Similarly,

lim Ly _ o) lim (4DB),

E=0 JapB Y —X

where lllgr& (ADB—BEA) =0 if curve C has a unique tangent at each point. Thus the principal

value defines a function F(x) which is holomorphic at each point of C:

"fndy_1 fWdy 1 fdy
c y—x 2Juy—x 2)uw y—x

F(x)=

It can be proved that

f)dy_ fDdy_ ey, f(y)dy f(y)dy+mf( ).

c ¥Yy—Xx M YX c M Y—X

Let fo(x) be holomorphic in the band domain D enclosed by two closed curves Q, Q'
on each side of a closed simple curve C and outside of M, M'. Similarly, draw two closed
curves P, P’ respectively between C, M and C, M'. Let A(x, y), B(x, ¥) be functions of two
complex variables x, y, which are holomorphic, while x, y vary in D. Put

f(x)—f A2 £ ) ay,

£ =] B—;%’-f—)ﬁmdy.
Then,
=3 [ LD f@drs [ LD fiioya,

filx) =3 B(" B2 i (yydy+1 f Bed) 4 ay,

P

and
e )__ PB(x Y) 4 f A(y,Z)f()d+ fB(x ) 4 dy M’A(y’z)f(z)d

+i P'B(x Y) 4 fA(y’z)f()d+ f B(x, y)dy M,A(y’Z)f()d'

The four double integrals are expressed after computation by

_ B(x,y) A(y, 2) [ Blx, 2)4(z, 2)
Il—foo(z)dz e y—x z—y dy— . — Jo(z)dz,
B(x y) A(y, 2) 4

L=[ hee | 2E0d0d,,

_ B(r,y) A(.2) ;.
B A 4y [ DG 0,
v

y—x 2= M z—

L= fM, folz)dz
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Thus
fa(x)= Z +>
where
=g Hedden oy 2 [ Beddes) ),

or, by computing the residue at z=x as x varies on C,

2 =—n2d(x, DB (x, )f(a),

and

B A
Bo3 e [ BB A0 4 | | Bep e,

] 0 [ A0 g1 [ i Bt
The integral
[RLSERY
c y—x z—y
- in which x, y, z vary on the same curve C, is equal to
BA(x, z) =1 Blx.y) Aly.2) dy,

2)a1qr ¥Y—x z—Yy

which is holomorphic in the ring domain between Q and Q'. If the singular integral exists,
then

BA(x, z) = . —————l;(f’xy) ———i(z’yz)d

?

and

22= J-M+M, BA(x, z)fo(z)dz.

Since BA(x, z) and fy(z) are holomorphic in the ring domain between Q and Q’, each of the
contours M and M’ can be deformed so that both coincide with C. Thus,

2,= fCBA (x, Do) dz.

We obtain a fundamental formula (Poincaré, 1910b),

B(x 3’) f Ay, z)f(z)dz——sz(x X)A(x, x)fo(x)-i-/ BA(x, 2)fo(2)dz.  (A18)

C

Suppose that the function A(x, y), B{x, ¥), fo(x) of real variables admit period ) in
each of the variables and are holomorphic as x, y describe a small ring domain abutting
on the closed curve C with unique tangent at each point. Put
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u=emiz/l , v= ezm’y/ﬂ7 w= ezwiz/ﬂ’

and consider

1e2™ riz/)

i@ =[ "4 y) = Ry,

ix/)
£ =[ "B y) e i dy.

It can be shown that

folx) == Bx, x)d (x, ) fo(x)

eme/Q iez'lriy/()

+ f fo(z)dz f B(x _’}’)A (y’ z) e2miyll _ p2minfQ) p2mizlQ . p2miy/Q dy (Alg)

Let A(x, y) be an arbitrary point on C such that x=£(t), y=¢(t), and 4 describe a
pole y = x as the only singularity; i.e.,

M,
MG, 5) = Mo, 3) + B2,

where Mo(x, ), Mi(x, ¥) are holomorphic. Then, by computation of the residue of M;(x),
we obtain

yox

e27riy/ﬂ —_ eZ‘n'ix/ﬂ
i | S M, ) | (A20)

The function in the parenthesis is holomorphic as x, y vary on the real axis and admits the
period Q in x, y.
Let N(x, ¥) be a function similar to M(x, y), and write

0 Q
Al = f M(x, Do dy, fulx) = f N(x, ) /() dy:

then, applying equation A19 and A20, we obtain
0 Q )
L N(x, y)dy ] M(y, 2) f(z) dz=—mN: (x) M () £ (x)
Q Q
+ f f(2)dz ] N(x, )My, 2)dy,  (A2D)
0 0

where N;(x) is the residue of N(x, y) at the pole y = x.
Let A(x, y) be an arbitrary point on C such that x= f(¢), y=¢(t), and 4 describe a
whole circuit of C in the direct sense as t varies from 0 to Q. If M[x(7), y(7)] is an attracting

point and p(r) is the density at M, then the tangential component along AT of attraction at
A is
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(T) = f’“ p(7) cos %M)ds | ‘ M(1)
- f 9 o' (1) [x(r) —x(1)] + ' (1) [y(1) — ¥()] /
[x(r) — ()12 + [y(7) — y()]? : T
« Vx'2(1) + y'2(7) p(r)dr. A

Va2 (t) + y'*(1)

The denominator of the kernel of this integral, which we denote by N(r, t), vanishes for
t=17. Let r=¢t+ h and expand x(7), x'(7), y(7), ¥’ (1) in Taylor series in powers of h at
7=t; then,

1 xlx” + yl "

NG o) =+ 5 ot

+

Thus the singularity of the tangential derivative of the kernel for the logarithmic potential
of a simple layer is a simple pole with residue 1.

Suppose that H is a continuous kernel but that K i is a singular kernel with a simple pole
at y = x, and consider the integral equation

Q '‘Q
5@ = o + [ HeNf@)dy+ [ K@ 00y

If the integral exists, then it is equal to its principal value, so that

Fx) = o(x) + fo'“ N Nf0)dy,  Nixy) =Hx,y) +K(x, ).  (A22)

Any solution of equation A22 is a solution of

‘0 ‘0 , 0
@) = o + [ N emdy+ [T NG pay [ N af@a a2s)

It can be shown conversely that any solution f(x) of equation A23 satisfies equation A22,
owing to the theorem we have just presented. Hence the process of iteration for the integral
equation containing such singular integrals is justified.

Now we return to the solution of integral equation A17. All functions appearing in the
equation are holomorphic since curve C is regular analytic and periodic in s and s, except

that sin §/r admits a simple pole of residue 1 at s = s’
Let

n(s)z_&, A(s, s )_._1_ cos ll/’ B(s, S,)=2iw cos 0 sin 1[;,

T r U r

where B(s, s') has residue 2iw cos 8/ma at s = s'; then equation Al7 is written

p(s) = L A(s, s")p(s")ds" + fc B(s, s")p(s")ds" + m(s).
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Iterating the kernel by using equation A21 and remembering that

lim (s’ —s)B(s,s') = Ziocos §

[
s—>s' T

we arrive at the equation

(1 — 2“282 0>p(s) = f K5, sM)p(sMds" + (), (A24)

where

K(s,s") = fc A(s, s)A(s", s")ds' + L’ A(s, s')B(s', s")ds'
+[ B(s, s")A(s', s")ds' + fc B(s, s")B(s', s")ds’,
c

O(s) = n(s) + fCA(s, s')ds' + L: B(s, s'Yn(s')ds’.

The factor 1 — 4w? cos? §/a? does not vanish if the ocean does not cross the critical latitude
(Bertrand, 1923). Integral equation A24 is an ordinary Fredholm equation and admits a solu-
tion in general. Thus the existence of the Green function G(x, y; £, ) is established.

The next problem is to integrate integral equation A15. Thus the problem of dynamical
tide has been reduced to that of solving three Fredholm’s integral equations in succession.

RITZ’S VARIATIONAL METHOD

Equations A6a for tide on a geographical map is seen to be

2imcos 8 0D 2iw cos 0 ad
put————=——-, vV ——— =,
o 9% o dy
__C_,_ _ a(hu) a(h'l]) PY. - "
"dx'dy’
n"=—- g
ff k2

with the boundary condition
hvdx — hudy =0
along the boundary curve.
Poincaré (1910b) eliminated & from these equations and obtained

L3 (3, 22), 2 (;, 20), (8 300 om)
k2 ox

ox dy dy ox dy Oy ox
o2® =gl + 1"+ F(x, y),
By = ha? - 2wh; cos 6 _ 2wah cos 6
17 402 cos? 6 — o2’ n a 4?-cos? 0 — o’

with the boundary condition
h(@+2w) cos 0@)2 0
on o ds
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Putting ®=&,+i®,, (= +ile, I"=111+ill5, F=F,+iFs and separating the real and
imaginary parts, we obtain

g (h G(I)1> i(h 6@1) 0D, a'n+6q)2 om_ L
ax \'" ox dy dy dx dy Oy dx k2 O’

i(m@&p;(hl&)ﬁ% 2im L

0x dx ax oy oy ox Kk
gh 1y F, _
lcz a2k2+;zgzé a2l =0,
g (IE B,

TR ek ol ok ’

with the boundary condition

+
an « ds

dP: 2w cos 0 9D, 0D; | 2w cos § 0P1\ _
= —]=0 Al —+———— )=
an a ds

If we multiply the four equations respectively by 8®:dxdy, 8®.dxdy, 8{idxdy, 8{>dxdy
and integrate over 3, then the integral should be zero. This integral is shown after algebraic
computation to equal the variation 8] of this integral J:

aJ=0,
1= [ IR () + (B + () T (e -5 %)

§Pi+ 6P g(B+ ) | LI+ LI | LF 4+ 5F
e Toap T awk T e }d"dy

(A26)

Blondel (1912) and Jager (1916) discussed special cases of this integral of Poincaré
(1910b). This integral contains & and %, and it becomes infinite at the critical latitude. In order
to avoid this difficulty, Bertrand (1923) transformed equation A25 by putting

u=us+ius, v=uv1tive,
and
ul—&%ﬂvg+%—0, u2+2w—(;(ﬂvl+-')£2-=0,
v1+2wcos0 2+%= , ” 2w cos 8 1_*_%(?;72:0,

with the boundary condition
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huidy — hvidx = 0, husdy — hvedx = 0.

If we multiply these eight equations respectively by — ASu, — hdup, — hdv1, — hdvs, 8P4,
. 8@, 8L1, 8{2 and integrate over the whole surface 2, then we obtain

8J:=0,
Ji=— IL% [u§ + v2 + u? + v2 _ég_(;o_sﬂ (urve — ugv1) ] dxdy
o 0 150 )
+ f J' [ 5P, + 5P, +g(§i‘; f%) i'sza‘*z'kl;I'z'Cz F 1€1a ':kF 2€2] dudy.

The integral J; does not vanish.

Another form of the integral can be obtained if we eliminate @ and { from J, (Bertrand,
1923).
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